Font Size: a A A

Self-Assembly Assisted Polypolymerization (SAAP): A novel approach for the preparation of multiblock copolymers

Posted on:2008-04-02Degree:Ph.DType:Thesis
University:The Chinese University of Hong Kong (Hong Kong)Candidate:Hong, LiangzhiFull Text:PDF
GTID:2441390005453033Subject:Chemistry
Abstract/Summary:
In this thesis, we have proposed and developed a novel method: The Self-Assembly Assisted Polypolymerization (SAAP). Namely, using the self-assembly of A-B-A triblock copolymers with two active end groups in a selective solvent for the A-block to concentrate and expose the active end groups on the periphery of the resultant core-shell polymeric micelles, we can effectively couple each two active ends on different chains together to form a long multiblock copolymer chain with its sequence and block length well controlled by the initial triblock copolymer. To accomplish this project, we first built a high-vacuum system for living anionic polymerization and then synthesized and characterized narrowly distributed polyisoprene-b-polystyrene- b-polyisoprene (PI-b-PS-b-PI) triblock copolymer chains with their both ends capped respectively with bromobutyl and carboxylic acid active groups. The self assembly of such prepared triblock copolymers in n-hexane, a selective solvent for PI, was studied by a combination of static and dynamic laser light scattering (LLS). Finally, the self-assembled end-functionalized PI-b-PS-b-PI chains were coupled together by difunctional small molecules (linkers) to form long multiblock copolymers with a controlled structure.;In Chapter 1-3, properties and applications of block copolymers, synthetic methods especially living anionic polymerization as well as the development of the SAAP concept with some of previous successful examples are reviewed. Experimental methods, including the design and establishment of a special high-vacuum system, size exclusion chromatography and laser light scattering, are explained.;In Chapter 4, living anionic polymerization of alpha,o-di bromobutyl end-capped PI-b-PS-b-PI triblock copolymers and the end-capping reaction with 1,4-dibromobutane at the end of polymerization are described, including a in-depth analysis of the reaction mechanism that involves the dimerization of two living oligomer chain during the reaction of living polymeric anions with haloalkanes, i.e., the Wurtz-type coupling reaction. The self assembly and coupling reaction of 1,4-dilithio-1,1,4,4-tetraphenylbutane (DD2-) in n-hexane to form long (PI- b-PS-b-PI)10 multiblock chains are discussed. The coupling efficiencies with and without the self assembly are compared to demonstrate the principle of SAAP. However, the coupling reaction with dianion linker is troublesome because a trace amount of impurities in the solvent can remove its activity.;In Chapter 5, a method of improving the coupling efficiency is described. In this method, PI-b-PS-b-PI triblock copolymers is end-capped with avo-dicarboxylic acid groups via a reaction between living anions and carbon dioxide. Such prepared HOOC-ISI-COOH chains can be coupled with 1,6-hexamethylenediamine (HDA) in the presence of 1,3-dicyclohexylcarbodiimide (DCC) after the self assembly. The size exclusion chromatography (SEC) analysis shows that the SAAP method mainly leads to the formation of triblock copolymer chain dimers and the coupling efficiency is close to 50%. There is no coupling in THF without the self assembly. Further, a much better method of using alpha,o-diacyl chloride end-capped PI-b-PS-b-PI triblock copolymer chains in SAAP to prepare long multiblock copolymer chains is described. Using this recently developed method, we are able to prepared long ∼90-block copolymer chains (PI-b-PS-b-PI)30 which clearly shows the advantage of using SAAP to prepare long multiblock copolymers with a controllable sequence and different block lengths.
Keywords/Search Tags:SAAP, Copolymer, Multiblock, Assembly, Polymerization, Using, Method
Related items