Font Size: a A A

Design, fabrication, and testing of nanostructured carbons and composites

Posted on:2009-06-26Degree:Ph.DType:Thesis
University:University of MinnesotaCandidate:Wang, ZhiyongFull Text:PDF
GTID:2441390002994597Subject:Chemistry
Abstract/Summary:
Many applications, such as catalysis, sensing, separation and energy storage and conversion, will benefit from the miniaturization of materials to nanometer length scales. This dissertation details my study of nanocomposites based on three-dimensionally ordered macroporous (3DOM) carbons and zirconia, and three-dimensionally ordered macroporous/mesoporous (3DOM/m) carbons. The macropores of these materials were produced using colloidal crystal templates while the mesopores were generated using surfactant templates. These solids are composed of close-packed and three-dimensionally interconnected spherical macropores surrounded by nanoscale solid or mesoporous wall skeletons. This unique architecture offers large surface areas, pore volumes, and good access into the bulk via a macroporous network.;3DOM carbons have been demonstrated as promising electrode materials for lithium ion batteries and sensors, but their electrochemical performance still needs to be improved. As a model system for the modification of the electrode, 3DOM C/TiO2 was synthesized by fabricating a conformal coating of TiO2 nanoparticles on the macropore walls of 3DOM C. My research further extended the micro-structural design of monolithic carbon from 3DOM to 3DOM/m. 3DOM/m C monoliths with high surface areas, controllable mesopore sizes, and mesopore ordering, were synthesized by three methods. One of the methods is simpler and more environment benign than previously reported methods. The mesopores in 3DOM/m C-based electrode provide room to accommodate secondary phases, such as graphitic carbon, SnO2 and Si which can improve the conductivity or lithium capacity of the electrode. Owing to this advantage, 3DOM/m C/C and 3DOM/m C/SnO2 exhibited significantly improved rate performance, lithium capacity and cycleability, compared with 3DOM C. To meet the demands of nano-sized functional materials in applications such as nano-device fabrication and drug delivery, mesoporous carbon nanoparticles with cubic, spherical and tetrapod shapes were also synthesized.;In addition, new methods were developed to assemble nanocomposites of bifunctional catalyst components. These materials were designed for the potential direct conversion of synthesis gas to clean liquid fuels. Coatings of zeolite and cobalt nanoparticles were fabricated on 3DOM promoted zirconia. The 3DOM zirconia-based nanocomposites were characterized by a wide variety of techniques to illustrate their morphologies, internal structures, chemical compositions, porosity, and crystallographic phases.
Keywords/Search Tags:3DOM, Carbons, Materials
Related items