Font Size: a A A

Design, experimentation, and modeling of a novel continuous biodrying process

Posted on:2011-08-17Degree:Ph.DType:Thesis
University:Ecole Polytechnique, Montreal (Canada)Candidate:Navaee-Ardeh, ShahramFull Text:PDF
GTID:2441390002962531Subject:Engineering
Abstract/Summary:
Massive production of sludge in the pulp and paper industry has made the effective sludge management increasingly a critical issue for the industry due to high landfill and transportation costs, and complex regulatory frameworks for options such as sludge landspreading and composting. Sludge dewatering challenges are exacerbated at many mills due to improved in-plant fiber recovery coupled with increased production of secondary sludge, leading to a mixed sludge with a high proportion of biological matter which is difficult to dewater.A process variable analysis was performed to determine the key variable(s) in the continuous biodrying reactor. Several variables were investigated, namely: type of biomass feed, pH of biomass, nutrition level (C/N ratio), residence times, recycle ratio of biodried sludge, and outlet relative humidity profile along the reactor height. The key variables that were identified in the continuous biodrying reactor were the type of biomass feed and the outlet relative humidity profiles. The biomass feed is mill specific and since one mill was studied for this study, the nutrition level of the biomass feed was found adequate for the microbial activity, and hence the type of biomass is a fixed parameter. The influence of outlet relative humidity profile was investigated on the overall performance and the complexity index of the continuous biodrying reactor. The best biodrying efficiency was achieved at an outlet relative humidity profile which controls the removal of unbound water at the wet-bulb temperature in the 1st and 2nd compartments of the reactor, and the removal of bound water at the dry-bulb temperature in the 3rd and 4th compartments.Through a systematic modeling approach, a 2-D model was developed to describe the transport phenomena in the continuous biodrying reactor. The results of the 2-D model were in satisfactory agreement with the experimental data. It was found that about 30% w/w of the total water removal (drying rate) takes place in the 1st and 2nd compartments mainly under a convection dominated mechanism, whereas about 70% w/w of the total water removal takes place in the 3rd and 4th compartments where a bioheat-diffusion dominated mechanism controls the transport phenomena.The 2-D model was found to be an appropriate tool for the estimation of the total water removal rate (drying rate) in the continuous biodrying reactor when compared to the 1-D model. A dimensionless analysis was performed on the 2-D model and established the preliminary criteria for the scale-up of the continuous biodrying process.In this thesis, a novel continuous biodrying reactor was designed and developed for drying pulp and paper mixed sludge to economic dry solids level so that the dried sludge can be economically and safely combusted in a biomass boiler for energy recovery. In all experimental runs the economic dry solids level was achieved, proving the process successful. In the biodrying process, in addition to the forced aeration, the drying rates are enhanced by biological heat generated through the microbial activity of mesophilic and thermophilic microorganisms naturally present in the porous matrix of mixed sludge. This makes the biodrying process more attractive compared to the conventional drying techniques because the reactor is a self-heating process. The reactor is divided into four nominal compartments and the mixed sludge dries as it moves downward in the reactor. The residence times were 4-8 days, which are 2-3 times shorter than the residence times achieved in a batch biodrying reactor previously studied by our research group for mixed sludge drying.Finally, a techno-economic assessment of the continuous biodrying process revealed that there is great potential for the implementation of the biodrying process in Canadian pulp and paper mills. The techno-economic results were compared to the other competitive existing drying technologies. It was proven that the continuous biodrying process results in significant economic benefits and has great potential to address the current industrial problems associated with sludge management.
Keywords/Search Tags:Continuous biodrying, Process, Sludge, 2-D model, Outlet relative humidity profile, Pulp and paper, Total water removal, Biomass feed
Related items