Nanoskiving: A new method for nanofabrication | | Posted on:2009-05-09 | Degree:Ph.D | Type:Thesis | | University:Harvard University | Candidate:Xu, Qiaobing | Full Text:PDF | | GTID:2441390002494363 | Subject:Chemistry | | Abstract/Summary: | PDF Full Text Request | | "Nanoskiving" is the name we have given to a technique for the fabrication of nanostructures by combining deposition of thin films on a topographically patterned polymeric substrate using physical vapor methods and sectioning with an ultramicrotome. Ultramicrotomy was originally developed as a tool for sectioning biological specimens for analysis by optical or electron microscopy. The imaging of biological specimens requires the ability to slice mum to sub-mum thick sections and the imaging is done through the thinnest dimension of the section. Nanoskiving utilizes an ultramicrotome because of its ability to section sub-100 nm slices reproducibly.; In this thesis, I will describe the fabrication by nanoskiving of the diverse nanostructures and their applications in electronics and optics. Nanoskiving is experimentally simple, and requires little in the way of facilities (for example, access to a cleanroom or a high-resolution e-beam writer is unnecessary). It is applicable to many classes of structures and materials with which conventional methods of nanofabrication (e.g. EUV or X-ray photolithography, e-beam lithography (EBL) focused ion-beam (FIB)) fail. This method begins with the deposition of thin metallic films on an epoxy substrate by e-beam evaporation or sputtering. After embedding the thin metallic film in an epoxy matrix, sectioning (in a plane perpendicular or parallel to the metal film) with an ultramicrotome generates nanometer-thick sections of epoxy containing metallic nanostructures. The cross-section of the metal wires embedded in the resulting thin epoxy sections is controlled by the thickness of the evaporated metal film (which can be as small as 20 nm), and the thickness of the sections cut by the microtome (as small as 30 nm, using a standard 35° diamond knife). The embedded nanostructures can be transferred to, and positioned on planar or curved substrates by manipulating the thin polymer film. Removal of the epoxy matrix by etching with an oxygen plasma generates free-standing metallic nanostructures.; Chapter 1 is an overview of nanoskiving---a technique that combines thin-film deposition of metal on a topographically contoured substrate with sectioning using an ultramicrotome---as a method of fabricating nanostructures. Nanoskiving provides a simple and convenient procedure to produce arrays (over areas of mm2 to cm2) of structures with cross-sectional dimensions in the thirty-nanometer regime embedded in epoxy. The ability to control the dimensions of nanostructures, combined with the ability to manipulate and position them, enables the fabrication of nanostructures with geometries that are difficult to prepare by other methods. Two classes of applications--- in optics and in electronics---demonstrate the utility of nanostructures fabricated by nanoskiving.; Chapter 2 shows the fabrication by nanoskiving of complex nanostructures that are difficult or impossible to achieve by other nanofabrication methods. These include multilayer structures, structures on curved surfaces, structures that span gaps, structures in less familiar materials, structures with high-aspect ratios, and large-area structures comprising two-dimensional periodic arrays.; Chapter 3 demonstrates the Fabrication patterned arrays of gold structures (for example, rings) with wall thickness of 40 nm, and with high aspect ratios up to 25.; Chapter 4 introduces the fabrication by nanoskiving of gold nanowires of uniform, controllable length, width, and height, and describes a systematic study of the dependence of the surface plasmon resonance on the geometry of these wires.; Chapter 5 describes the fabrication of arrays of closed and open, loop-shaped nanostructures over mm2 area by nanoskiving. These arrays of metallic structures serve as frequency-selective surfaces at mid-infrared wavelengths.; Chapter 6 describes a procedure to fabricate an array of nanoelectrodes that can be addressed from the back face of the slab of epoxy res... | | Keywords/Search Tags: | Nanoskiving, Fabrication, Nanostructures, Epoxy, Thin, Method | PDF Full Text Request | Related items |
| |
|