Font Size: a A A

Measurement of the conductance properties of single organic molecules using gold nanoparticles

Posted on:2009-06-24Degree:Ph.DType:Thesis
University:The Weizmann Institute of Science (Israel)Candidate:Gordin, YoavFull Text:PDF
GTID:2441390002490935Subject:Chemistry
Abstract/Summary:
In this work we describe the development and application of a new method for the electrical conductance measurement of single molecules. The issue of reliable theoretical modeling of molecular electronic transport is still very much in debate. The experimental methods used in the field are difficult to realize and interpret; most have very low yield, preventing proper statistical analysis and many have problems in the researchers' ability to characterize the system properly.;We address this issue by using self assembly of gold nanoparticle-molecule-gold nanoparticle objects called dimers. This method allows fabrication of molecular junctions with greater ease; moreover it allows individual characterization of the various elements of the junction, removing much of the uncertainties that exist in this kind of measurements. We make use of home grown gold nanoparticles with a few tens of nanometer diameter to form the hybrid dimers. The dimers are large enough to connect between electrodes fabricated using electron beam lithography and to measure the electric properties of the molecule. We have invested significant effort in the characterization of the system, ensuring that the dimers are indeed bridged by the molecules, and that the chances that more than a single molecule exists in a dimer are negligibly small.;We have made measurements on single gold nanoparticles, to characterize their properties separately from those of the molecule. These measurements have allowed us to observe single electron transistor (SET) behavior, resulting from the requirement that electrons charge the nanoparticle during transport. We have shown that the energy associated with this charging scales with nanoparticle size as expected. We have performed measurements on single organic molecules, showing that there is a very strong influence of molecular conjugation (the way electronic orbitals are spread along the molecular backbone) on its conductance. The molecules with broken conjugation conduct more than an order of magnitude less than those that are fully conjugated.;A distinct feature of the conjugated molecule is the appearance of pronounced peaks in its conductance at certain voltage values. We have shown that these peaks can be gated randomly by the electrostatic environment, but the peak spectrum is reproducible among the different samples of the same molecular species that we studied.;To properly study and understand the peak structure we developed the ability to add gate dependent measurements to our system. Unfortunately the backdrop of this was a drastic reduction in the yield of good samples for measurement. We focused on four different conjugated molecules to attempt to understand the effect of the molecular structure on the properties of the peak spectra. We have been able to measure three of these molecules, and obtained SET diamond plots reminiscent of those seen for the single particles. The molecular diamonds have a larger energy gap than that found in single particles, as can be expected from their smaller size. We do not yet have enough data on this issue to make any definite statements on the influence of the molecular structure on the peak structure.;Another topic investigated in this work is the physics of the two gold nanoparticles, giving rise to double quantum dot (DQD) phenomena. This physics is observed in dimers that do not exhibit "molecular" (high energy) features, or at low voltages before the appearance of the molecular peaks. We have used these phenomena to fully characterize the properties of our system and understand better the role the molecule plays in transport at low bias (below the voltage of the first peak).;I begin this thesis with an introduction to the field of molecular electronics; I briefly review the theoretical approaches and the experimental methods used. I then describe in detail the dimer method, whose development took up a major part of this work, relaying in detail the relevant issues and considerations. I relate briefly some early measurements done on single nanoparticles to verify our understanding of transport in the system. Moving to the description of single molecule conductance measurements I start by describing measurements demonstrating the importance of conjugation to molecular conductance. I discuss in detail the peaks appearing in the conductance measurements of the conjugated molecules describing their sample to sample variability, temporal behavior and temperature dependence. I describe the importance of gating for a comprehensive understanding of the peak spectrum and present some preliminary measurements of three different molecular species that we have been able to gate. In the final chapter of this work I describe the double quantum dot phenomena observed in the dimer system; these phenomena are not immediately relevant to the issue of single molecule conductance, but serve as a tool to characterize our system fully while providing assurance that the current goes through both nanoparticles. (Abstract shortened by UMI.)...
Keywords/Search Tags:Single, Conductance, Nanoparticles, Molecules, Measurement, System, Molecular, Using
Related items