Font Size: a A A

Controlled synthesis of high quality carbon nanotubes and their applications in transparent conductive films

Posted on:2010-03-21Degree:Ph.DType:Thesis
University:University of Arkansas at Little RockCandidate:Dervishi, EnkeledaFull Text:PDF
GTID:2441390002483625Subject:Engineering
Abstract/Summary:
Carbon nanotubes (CNTs) have exceptional electrical, mechanical and electronic properties which make them attractive for numerous applications. Catalytic chemical vapor deposition (cCVD) is one of the most promising methods for large-scale production of high-quality CNTs at a relatively low cost. Synthesis conditions such as catalyst composition, reaction temperature, hydrocarbon type and flow rate, have an enormous influence on the morphological properties of nanotubes.;This research presents a thorough study of the parametric conditions affecting the growth properties of single-wall and multi-wall carbon nanotubes. High quality single-wall carbon nanotubes (SWCNTs) were synthesized on different catalytic systems, using the inductive radio frequency cCVD method. The catalyst compositions, as well as, the reaction temperatures were varied and methane or acetylene was separately utilized as the hydrocarbon source. Noticeable differences when it comes to the size controllability of the catalyst active nano-particles and the nanotube morphology were observed at these different reaction conditions.;High efficiency multi-wall carbon nanotubes (MWCNTs) were synthesized from the pyrolytic decomposition of acetylene over Fe-Co/CaCO3. The catalyst stoichiometry was found to strongly influence the carbon deposition rate and the nanotube crystallinity characteristics. A comprehensive comparison was made between two different type of heating methods (resistive heating with external oven and inductive heating) with regards to gas utilization, the formation of amorphous carbon, nanotube morphology and growth efficiency. The structural and morphological properties of CNTs and of catalytic systems were analyzed by microscopy, X-ray diffraction, surface area analyzer, thermogravimetric analysis, Raman, and UV-Vis-NIR spectroscopy. MWCNTs synthesized by radio frequency cCVD have smaller outside diameters, larger inner diameters, fewer numbers of graphitic walls, less amorphous carbon formation, and higher crystallinity compared with the ones grown by the external furnace cCVD method.;Lastly, this research presents the development and characterization of carbon nanotube polymer composites and conductive transparent nanotube thin film coatings. Electrostatic charge dissipation presents a major problem for applications ranging from electronics to space exploration. Nanotube polymer composites with new and improved bulk and surface properties were found to have the highest charge dissipation rates with decay times of seconds. Moreover, a comparative study of conductive transparent thin coatings on glass substrates using different types of CNTs is also discussed. The optoelectronic performance of the carbon nanotube films was found to strongly depend on many effects; including the ratio of metallic-to-semiconducting tubes, dispersion, length, diameter, wall number, and defects.
Keywords/Search Tags:Carbon, Applications, Transparent, Conductive, Cnts
Related items