Font Size: a A A

Instantons and chiral symmetry in string theory

Posted on:2007-11-14Degree:Ph.DType:Thesis
University:The University of ChicagoCandidate:Jensen, Steuard BFull Text:PDF
GTID:2440390005960952Subject:Physics
Abstract/Summary:
The study of non-perturbative effects has played an important role in many recent developments in physics. String theory has proven to be an especially fertile ground for such studies: not only is its own non-perturbative structure interesting, but it has emerged as a framework in which to study the strongly coupled behavior of a variety of models in quantum field theory as well. In this thesis, I present results demonstrating the use of string theory in both these ways.; First, I discuss non-perturbative corrections to the Kaluza-Klein monopole in string theory. As usually described, this object has an isometry around a compact circle and is related by T-duality to a "smeared" NS5-brane which retains that isometry. The true NS5-brane solution is localized at a point on the circle, so duality implies that the Kaluza-Klein monopole should show some corresponding behavior. By expressing the Kaluza-Klein monopole as a gauged linear sigma model in two dimensions, I show that worldsheet instantons give corrections to its geometry. These corrections can be understood as a localization in "winding space" which could be probed by strings with winding charge around the circle.; Second, I discuss a configuration of D-branes in string theory whose low energy physics corresponds to a 3+1-dimensional quantum field theory with dynamically broken chiral symmetry. In a weakly coupled region of parameter space, this theory is a non-local generalization of the Nambu-Jona-Lasinio model. Indications are given that this model dynamically breaks chiral symmetry at arbitrarily weak 't Hooft coupling. At strong coupling this field theory is no longer solvable directly, but an alternate weakly coupled description can be found from the string theory model: the dynamics is determined by replacing a stack of D-branes by their near-horizon geometry and studying the low energy theory on probe D-branes in that background. In yet another region of parameter space, this D-brane configuration gives rise to large Nc QCD. Thus, the system interpolates between the NJL model and QCD.
Keywords/Search Tags:String theory, Chiral symmetry, Model
Related items