Font Size: a A A

Laser Coulomb explosion imaging of polyatomic molecules

Posted on:2007-10-02Degree:M.ScType:Thesis
University:University of Ottawa (Canada)Candidate:Gagnon, JustinFull Text:PDF
GTID:2440390005468619Subject:Physics
Abstract/Summary:
Laser technology has steadily evolved over the last 50 years since its invention, and has generated a series of ramifications in experimental science. Particularly, lasers have enabled the creation of the shortest man-made event: a femtosecond pulse of electromagnetic radiation. Due to their unmatched spatial and temporal resolutions, femtosecond pulses have been used in a number of techniques to measure properties of individual molecules.; One of these techniques is Coulomb Explosion Imaging (CEI), whose purpose is to retrieve the structure of individual molecules. Unlike frequency domain spectroscopy (which is ill-suited to characterize the structure of large molecules due to their complex spectra) and diffraction techniques (which only work if molecules can be locked into a crystallization pattern), CEI provides a direct measurement of the properties of individual molecules, instead of measuring a sample as a whole. This novel technique was first introduced to study molecular structure by colliding a beam of highly energetic ions onto a thin foil. The version of CEI used in this work uses a beam of neutral molecules and replaces the thin foil with femtosecond optical pulses. The introduction of the laser has brought with it the ability to conduct time-resolved measurements of molecular processes (breaking of molecular bonds, internuclear motion, for example) on a femtosecond time scale using pump-probe techniques in conjunction with CEI. Furthermore, CEI is presently the only technique that can discriminate single molecules based on their handedness.; I have conducted a Laser Coulomb Explosion Imaging (LCEI) experiment using dicloromethane as a model polyatomic molecule. In order to perform LCEI, an intense femtosecond laser pulse is used to strip away electrons from a molecule and cause it to explode into smaller fragments. Imaging the molecule is done using data collected from its fragments. Thus, in practice LCEI can be seen as a technique comprising an experimental phase (Coulomb explosion) and an analytical phase (imaging). Dichloromethane was chosen for this study to prepare the techniques that are necessary for future experiments on chiral molecules.; The experimental setup used for this instance of LCEI is the PATRICK instrument, a combination of high-end vacuum, electronics and laser equipment, which will also be described herein. The rest of this thesis will focus on the results obtained from the computational tools I developed for imaging the CEI data and obtaining physical properties about the exploded molecules. In doing so I have also obtained the first geometrical reconstructions of five atom molecules from CEI data, which will also be given in this study.; Though LCEI is a general technique that can be exploited in a variety of different experiments, this particular project was built around the interest of imaging chiral molecules. Unlike mass, multipole moments, polarizabilities and other "conventional" physical properties of molecules, chirality arises solely from spatial symmetry considerations, making it more elusive. For example, in order to experimentally determine the properties of a molecule in the traditional manner, one proceeds by inferring molecular characteristics from general spectroscopic data pertaining to a sample of molecules. In this manner, molecules are ascribed properties based on statistical measurements done on a population.; Although statistical methods are also used to measure the handedness of a sample of molecules, it is understood that these measurements yield information only about the sample, but not the individual molecules themselves. Indeed, chirality is not a property of a type of molecule, but of individual molecules, rendering LCEI very suitable to measure chirality. Accordingly, it is the ultimate goal of this thesis to set the stage for future experiments involving the measurement of the handedness of individual chiral molecules.
Keywords/Search Tags:Molecules, Coulomb explosion imaging, Laser, CEI, Individual
Related items