Font Size: a A A

Reconstructing climate variability using tree rings and glacier fluctuations in the southern Chilean Andes

Posted on:2008-05-08Degree:Ph.DType:Thesis
University:The University of Western Ontario (Canada)Candidate:Aravena, Juan-CarlosFull Text:PDF
GTID:2440390005454995Subject:Physical geography
Abstract/Summary:
This thesis investigates climate variability in southern South America (south of 40°S) during the last 400 years using instrumental data, tree rings and glacier fluctuations. The dominant spatial and temporal patterns of a network of 25 homogeneous instrumental rainfall records were analyzed and used to define four regional precipitation series (1950-2000): northwestern Patagonia, central Patagonia, Patagonian plains-Atlantic, and southern Patagonia. Time series analysis of these regional patterns shows marked decadal variability for northwestern and central Patagonia, 3-7 year oscillations for Patagonian plains-Atlantic region, and a strong biannual oscillatory mode for southern Patagonia. Regional rainfall appears to be strongly influenced by Antarctic circulation modes (Antarctic Oscillation Index) while the ENSO influence on rainfall variability is less evident. Highly significant correlation of precipitation on the west coast of Patagonia with the pressure gradient between the subtropical eastern Pacific and the high-latitude south eastern Pacific is confirmed.;A new network of 18 tree-ring chronologies from Pilgerodendron uviferum, an endemic conifer, was developed from sites along the western flank of the southern Andes. Highly significant series inter-correlation values ranged between 0.44 and 0.629 while mean sensitivity values ranged between 0.186 and 0.252. The series have relatively few missing rings (0.77-0.12% in individual chronologies). The oldest Pilgerodendron sampled to date was 859 years old while the chronology length ranged between 239 and 633 years. Ring-width series are correlated with precipitation but there were difficulties developing strong precipitation/ring-width relationships for individual stations/sites. However, two regional rainfall reconstructions were developed based on the inverse correlation between Pilgerodendron radial growth and the precipitation of northwestern and southern Patagonia. The reconstruction for spring-early summer in northwestern Patagonia extends from AD 1600 to 2002, and only explains 14% of the variance in the instrumental record. The southern Patagonia summer-autumn precipitation reconstruction (1600 to 2000) explains 40% of the total variance. Both reconstructed series show oscillatory modes for periodicities between 2 and 4 years and between 20 and 40 years. Droughts recognized in the reconstructed northwestern Patagonia precipitation series coincide with several other precipitation reconstructions of south-central Chile and Argentina over the last 400 years.;"Little Ice Age" glacier fluctuations were examined at Mount San Lorenzo (47°30'S) and Santa Ines Island (53°45'S) in southern Chile using dendroglaciologic, geomorphic and historical (documentary, photographic) evidence. At Mount San Lorenzo the glacial advances occurred between 1600 and the late 1800s-early 1900s. At Santa Ines Island, the oldest glacial advance is dated ca. AD 1675 at Alejandro Glacier. Minimum age estimates ca. AD 1758, 1840-45 and 1895-1910 are common to Alejandro and Beatriz glaciers suggesting synchronous glacial activity. Glaciers have been receding at both sites during the last half of the 20th century. Radiocarbon dates from peat at Beatriz Glacier on Santa Ines Island indicate that the seventeenth century advance was the most extensive in the last 5,300 years in this area. Comparison between these glacier histories and climatic reconstructions for the last 400 years shows that glaciers from both study areas respond to a combination of temperature and precipitation. Future work involving a multi-criteria approach to date these moraines should include examination of soils, volcanic tephras and lake deposits within moraines, together with other dating tools to improve the dating control of the glacier histories.;Keywords. Precipitation, homogeneity analysis, atmospheric circulation, Pilgerodendron uviferum, tree rings, time series analysis, climate variability, Southern South America, glaciers, dendroglaciology, Little Ice Age.
Keywords/Search Tags:Southern, Climate variability, Tree rings, Glacier, Last 400 years, Using, Series, Santa ines island
Related items