Font Size: a A A

Attenuation and velocity dispersion in the exploration seismic frequency band

Posted on:2010-04-15Degree:Ph.DType:Thesis
University:University of Toronto (Canada)Candidate:Sun, LangqiuFull Text:PDF
GTID:2440390002975467Subject:Geophysics
Abstract/Summary:
In an anelastic medium, seismic waves are distorted by attenuation and velocity dispersion, which depend on petrophysical properties of reservoir rocks. The effective attenuation and velocity dispersion is a combination of intrinsic attenuation and apparent attenuation due to scattering, transmission response, and data acquisition system. Velocity dispersion is usually neglected in seismic data processing partly because of insufficient observations in the exploration seismic frequency band. This thesis investigates the methods of measuring velocity dispersion in the exploration seismic frequency band and interprets the velocity dispersion data in terms of petrophysical properties.;Using the SWCC method, velocity dispersion is measured in the uncorrelated vibrator VSP data from three areas with different geological settings, i.e., Mallik gas hydrate zone, McArthur River uranium mines, and Outokumpu crystalline rocks. The observed velocity dispersion is fitted to a straight line with respect to log frequency for a constant (frequency-independent) Q value. This provides an alternative method for calculating Q.;A constant Q value does not directly link to petrophysical properties. A modeling study is implemented for the Mallik and McArthur River data to interpret the velocity dispersion observations in terms of petrophysical properties. The detailed multi-parameter petrophysical reservoir models are built according to the well logs; the models' parameters are adjusted by fitting the synthetic data to the observed data. In this way, seismic attenuation and velocity dispersion provide new insight into petrophysics properties at the Mallik and McArthur River sites.;Potentially, observations of attenuation and velocity dispersion in the exploration seismic frequency band can improve the deconvolution process for vibrator data, Q-compensation, near-surface analysis, and first break picking for seismic data.;Broadband, uncorrelated vibrator data are suitable for measuring velocity dispersion in the exploration seismic frequency band, and a broad bandwidth optimizes the observability of velocity dispersion. Four methods of measuring velocity dispersion in uncorrelated vibrator VSP data are investigated, which are the sliding window crosscorrelation (SWCC) method, the instantaneous phase method, the spectral decomposition method, and the cross spectrum method. Among them, the SWCC method is a new method and has satisfactory robustness, accuracy, and efficiency.
Keywords/Search Tags:Velocity dispersion, Exploration seismic frequency band, Petrophysical properties, Method, SWCC, Data
Related items