Font Size: a A A

Fabrication And Establishment Of Highly Conductive Graphene Flexible Circuits By 3D Printing

Posted on:2017-03-03Degree:MasterType:Thesis
Country:ChinaCandidate:D ZhangFull Text:PDF
GTID:2311330491961223Subject:Materials Science and Engineering
Abstract/Summary:PDF Full Text Request
Fused depositing modeling (FDM) is a fast, efficient process among 3D printing techniques. In this paper, we report the fabrication of the 3D printed flexible circuits based on graphene. Modified two-step in-situ reduced method is used to synthesize reduced graphene oxide (r-GO), whose conductivity can reach to 600 S/cm. Polylactic acid (PLA) and r-GO are mixed by melt blending. The SEM images show that the r-GO can be homogenous dispersed in the PLA. The 3D print-used composites filaments with the diameter of 1.75 mm are fabricated through melt extrusion. The conductivity of the composite filaments from 3D printer can reach to 4.76 S/cm (6 wt% r-GO). The orientation of r-GO occurs during the extrusion process, which contributing to increase the conductivity of the filaments. The composite also exhibit superior mechanical property. The printed 2D and 3D flexible circuits have strong interface bonding force between the layers. The filaments from 3D printer can replace the copper wire because of the high conductivity. This arbitrary 3D graphene-based structure printing technic may open a new prospect in electronic and energy storage fields.
Keywords/Search Tags:Graphene, Flexible circuits, 3D printing
PDF Full Text Request
Related items