Font Size: a A A

Singular Dirichlet Problem With A Convection Term Only The Asymptotic Behavior Of The Classical Solution

Posted on:2010-03-09Degree:MasterType:Thesis
Country:ChinaCandidate:R R WangFull Text:PDF
GTID:2190360302958690Subject:Applied Mathematics
Abstract/Summary:PDF Full Text Request
We derive the boundary behaviour of the unique solution to a singular DirichletproblemwhereΩis a bounded domain with smooth boundary in RN(N≥1),λ∈R, q∈(0, 2];g satis?es(g1) g∈C1((0,∞), (0,∞)), g′(s) < 0 for all s > 0, (g2)b satis?es(b1) for someα∈(0, 1), is positive in ?;(b2) there exist some function k∈Λwith Ck > 0 and a positive constant b0 suchthatWhereΛdenote the set of all positive function whichsatisfyBy the properties of the local classic solution to problema perturbation method and constructing comparison functions, we showTheorem. Letλ∈R, q∈(0, 2], g satisfy (g1), (g2), b satisfy (b1), (b2). If k∈Λwith Ck > 0, then the unique solution uλof problem (P) satis?eswhere...
Keywords/Search Tags:Semilinear elliptic equations, a Dirichlet problem, rapidly varying sin-gularities, a convection term, the unique solution, the boundary behaviour
PDF Full Text Request
Related items