Font Size: a A A

Error-correcting D-disjunct Matrix Construction

Posted on:2008-07-24Degree:MasterType:Thesis
Country:ChinaCandidate:Y F YueFull Text:PDF
GTID:2190360215975765Subject:Basic mathematics
Abstract/Summary:PDF Full Text Request
Firstly we discuss the disjunct properties ofδc(n,d,k),the complement matrix ofδ(n,d,k),and prove that it is(n-d)-disjunct if k=n-1.Next we discuss thedisjunct properties and detecting and correcting abilities of matrices which act as thecomplement matrices of those obtained by the inclusion relations in simple complexesand subspaces.Define a new matrixδ**(n,d,k)as that which results by row augment-ing the matrixδ(n,d,k)withδc(n,α,k)(1≤α≤m+1(α∈Z)).We prove that ifk-d≥m(m≥3),then H(Bd**(n,d,k)))≥4 andδ**(n,d,k)can detect and correcterrors.In particular,if k=n-1,then its ability for detecting and correcting errors isthe largest.The following is our main results:Theorem 3.1 Letδc(n,d,n-1)be the complement matrix ofδ(n,d,n-1).Thenδc(n,d,n-1)is an(n-d)-disjunct matrix.Theorem 3.3 Letδc(n,d,k)be the complement matrix ofδ(n,d,k).If kc(n,d,k)is a 1-disjunct matrix.Theorem 3.4 For 1≤d≤n-1,let△denote simplicial complex in a set[n].De-fine the binary matrix M(△,d,n-1)by letting its rows and columns be respectivelyindexed by all the members of d-plane,say A1,A2,…At and all the(n-1)-plane,say B1,B2,…Bm.The matrix M(△,d,n-1) has a 1 in its(Ai,Bj)th entry if and onlyif Ai(?)Bj.Let Mc(△,d,n-1)be the complement matrix of M(△,d,n-1).ThenMc(△,d,n-1)is an(n-d)-disjunct matrix. Theorem 3.5 For 1≤d≤k≤n,let△denote simplicial complex in a set[n].Definethe binary matrix M(△,d,k)by letting its rows and columns be respectively indexed byall the members of d-plane,say A1,A2,…At and all the k-plane,say B1,B2,…Bl.Thematrix M(△,d,k)has a 1 in its(Ai,Bj)th entry if and only if Ai(?)Bj.Let Mc(△,d,k)be the complement matrix of M(△,d,k).If kc(△,d,k)is a 1-disjunctmatrix.Theorem 3.6 For 1≤d≤k≤n and let q be a prime power and let(?)q denotethe family of k dimensional subspaces of Fq(n).Define the binary matrixγ(n,d,k)byletting its rows and columns be respectively indexed by the members of(?)q and (?)q.For D∈(?)q and K∈(?)q,the matrixγ(n,d,k)has a 1 in its(D,K)th entry if andonly if D is a subset of K.Letγc(n,d,k)be the complement matrix ofγ(n,d,k).Thenγc(n,d,k)is a 1-disjunct matrix.Theorem 3.7 For 1≤d≤k≤n and q≥1,let((?))[q]k denote the set of all q-aryvectors of length n and weight k.Define the binary matrixπ(q,n,d,k)by letting itsrows and columns be respectively indexed by the members of((?))[q]d and((?))[q]k.Forα∈((?))[q]d and (?)∈((?))[q]k,the matrixπ(q,n,d,k)has a 1 in its(α,(?))th entry if andonly ifα(?)(?).Letπc(q,n,d,k)be the complement matrix ofπ(q,n,d,k).If kc(q,n,d,k)is a 1-disjunct matrix.Theorem 4.2 Ifδ**(n,d,k)is the matrix which results by row augmenting the matrixδ(n,d,k)withδc(n,2,k)and k-d≥3,then H(Bd**(n,d,k)))≥4.Theorem 4.3 Ifδ**(n,d,k)is the matrix which results by row augmenting the ma-trixδ(n,d,k)withδc(n,α,k)(1≤α≤m+1(α∈Z))and k-d≥m(m≥3),thenH(Bd**(n,d,k)))≥4. Theorem 4.4 For 2≤d≤n-2,we haveH(δ**(n,d,n-1))≥2n-2d,and H(Bd**(n,d,n-1)))≥n-d....
Keywords/Search Tags:pooling design, d-disjunct matrix, Hamming distance, complement of matrix
PDF Full Text Request
Related items