| Nanotechnology is a high and new technology, which has been developing from its birth at the end of the 1980s. The preparation of nanomaterials is an important part of nanotechnology. Because of its wide prospective applications in the filed of chemical industry catalysis, fine chinaware, irradiance parts of an apparatus, absorbance of IR, photoconductive materials, magnetism, metal oxide nanomaterials have been paying more and more attentions.In this paper, Cu(OH)2 nanowires have been synthesized by anodic oxidation of copper through a simple electrolysis process employing ionic liquid as an electrolyte. Controlling the electrochemical conditions can qualitatively modulate the lengths, amounts, and shapes of Cu(OH)2 nanostructures. A rational mechanism based on coordination self-assembly and oriented attachment is proposed for the selective formation of the polycrystalline Cu(OH)2 nanowires. In addition, the FeOOH nanoribbons, Ni(OH)2 nanosheets, and ZnO nanospheres were also synthesized by this route, indicative of the universality of the electrochemical route presented herein. The morphologies and structures of the synthesized nanostructures have been characterized by transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), powder X-ray diffraction (XRD), Fourier transform infrared spectra (FT-IR), and thermogravimetric (TG).Graphite, inexpensive and available in large quantities, unfortunately does not readily exfoliate to yield individual graphene sheets. Here a mild, one-step electrochemical approach for the preparation of ionic-liquid-functionalized graphite sheets with the assistance of an ionic liquid and water is presented. These ionic-liquid-treated graphite sheets can be exfoliated into functionalized graphene nanosheets that can not only be individuated and homogeneously distributed into polar aprotic solvents, but also need not be further deoxidized. Different types of ionic liquids and different ratios of the ionic liquid to water can influence the properties of the graphene nanosheets. Graphene nanosheet/polystyrene composites synthesized by a liquid-phase blend route exhibit a percolation threshold of 0.1 vol % for room temperature electrical conductivity, and, at only 4.19 vol %, this composite has a conductivity of 13.84 S m-1, which is 3–15 times that of polystyrene composites filled with single-walled carbon nanotubes. |