Font Size: a A A

The Complete Classification Of The Maximal Subsemigroups Of Finite Order-preserving Transformation Semigroup O_n

Posted on:2008-12-10Degree:MasterType:Thesis
Country:ChinaCandidate:C J ZhangFull Text:PDF
GTID:2120360218457357Subject:Computational Mathematics
Abstract/Summary:PDF Full Text Request
In[1],S is the the maximal subsemigroups of On,professor Yang has obtained the complete classification of the maximal subsemigroups of the finite order-preserving transformation semigroups On when | E(Jn-1\ S)|<3.In this paper,we give the the complete classification of the maximal subsemigroups of On when | E(Jn-1\ S)|≥3.First,we give four notations DD2r+1,UU2r+1,DU2r+1and UD2r+1. (1<k1<k2<…<k2r+2<n-1,k2i-1>k2i,k2i+1<k2i+1,i = 1,2,…,r + 1)Second,we prove all of them are the subsemigroups of On.Third,we are going to testify that they are all the maximal subsemigroups of On by the properties we have given.Forth,we verify the following is correct.If S is a maximal subsemigroup of On,|E(Jn-1\ S)|= n≥3.When n = 2r + 1,then E(Jn-1\S)has only two idempotent chains.(Ⅰ).E(Jn-1\S)= {[k1+1→k1],[k2→k2+1],…,[k2r→k2r+1],[k2r+1+1→k2r+1]},(1≤k1<k2<…k2r+1<n-1,k2i-1+1<k2i,k2i<k2i+1,i =1,2,…,r)(Ⅱ).E(Jn-1\S)= {[k1→k1 + 1],[k2 + 1→k2],…,[k2r+ 1→k2r],[k2r+1→k2r+1+ 1]},(1<k1<k2<…<k2r+1<n,k2i-1<k2i,k2i+ 1 < k2i+1,i = 1,2,…,r)When n = 2r + 2,then E(Jn-1\S)has only two idempotent chains.(Ⅲ).E(Jn-1\S)= {[k1 + 1→k1],[k-2→k2+1],…,[k2r+1+ 1→k2r+1],[k2r+2→k2r+2+ 1]},(1≤k1≤k2<…2r+1<n,k2i-1+1<k2i,k2i<k2i+1,i= 1,2,…,r).(Ⅳ).E(Jn-1\S)= {[k1→k1 + 1],[k2+1→k2],…,[k2r-1→k2r+1+1],[k2r+2+ 1→k2r+2]},(1<k1<k2<…<k2r+1<n-1,k2i-1<k2i,k2i+ 1 < k2i+1,i = 1,2,…,r).Fifth,we demonstrate that in(Ⅰ),S = DD2r+1;in(Ⅱ),S = UU2r+1;in(Ⅲ),S= DU2r+2;in(Ⅳ),S = UD2r+2.Thus,we have given the complete classification of the maximal subsemigroups of the finite order-preserving transformation semigroup On when | E(Jn-1\S)[≥3.
Keywords/Search Tags:Finite order-preserving transformation semigroup, Maximal subsemigroup, Idempotent element, Idempotent chain
PDF Full Text Request
Related items