1. For n = q3-q2 and a prime power q, we have(I) r(K2,q+,K2J+1,)≥n+1 Where t=q3-q2-[2(q2-1)-(q +1)],(II) r(K3.3, K3.s+1)≥n+ 1 where s=q3-q2-[3(q2-1)-3(q+ 1)],2. For a prime power q and a positive integer t, if (q-1)/t is a positive integer, we have r(K2J+1,K2s+1)≥n+1,where n = (q2 -1) /t, s = (q2-1)/t - 2{q -t)3. For given positive integers t and s, let n = [x] , 4. For given positive integers m≥2,t≥1 and n→∞, we have5. 25≤r(C5,K7)≤26. |