Font Size: a A A

On-wafer millimeter wave notch filter based on barium hexagonal ferrite thin films on platinum

Posted on:2015-08-18Degree:Ph.DType:Dissertation
University:University of Colorado at Colorado SpringsCandidate:Harward, Ian RoylanceFull Text:PDF
GTID:1478390020451246Subject:Physics
Abstract/Summary:
In this work, the growth of BaM and Al doped Ba M thin films on Pt templates, layered on a Si wafer, is demonstrated using a newly developed metallo-organic decomposition (MOD) process. It is shown that the BaM films are polycrystalline, with preferred perpendicular c-axis grain orientation. The magnetic properties such as anisotropy field, saturation magnetization, and remnant magnetization are studied as a function of temperature and film composition, and are shown to be correlated to the film microstructure. It is shown that these films exhibit high remnant magnetization, a property not measured in BaM single crystals, meaning a biasing magnet may not be necessary for millimeter wave device applications.;Ferromagnetic resonance (FMR) studies were performed on the ferrite films using the tool developed at UCCS for the study of high frequency magnetic materials, the broadband FMR (BFMR) system. The instrument is described in great detail, and the FMR studies on BaM show that the MOD-grown films exhibit narrow FMR linewidths, on the order of 150 Oe, and are therefore of sufficient quality for use in mm wave devices.;Finally, notch filters using the Pt/BaM are demonstrated. The filters are based on a microstrip design, where the Pt serves as the ground plane and the BaM is part of the dielectric. The Ba M absorbs signals at the ferromagnetic resonance frequency, which takes place in the mm wave range. The filters described were based on pure BaM, but Al doped BaM could easily be used to increase the operating frequency of the device. The operating frequency of these devices is also tunable using an externally applied magnetic field.
Keywords/Search Tags:Films, Bam, Wave, Using, FMR, Frequency
Related items