Font Size: a A A

Validation of Magnetospheric Magnetohydrodynamic Models

Posted on:2015-01-25Degree:Ph.DType:Dissertation
University:George Mason UniversityCandidate:Curtis, BrianFull Text:PDF
GTID:1478390017491137Subject:Physics
Abstract/Summary:
Magnetospheric magnetohydrodynamic (MHD) models are commonly used for both prediction and modeling of Earth's magnetosphere. To date, very little validation has been performed to determine their limits, uncertainties, and differences. In this work, we performed a comprehensive analysis using several commonly used validation techniques in the atmospheric sciences to MHD-based models of Earth's magnetosphere for the first time. The validation techniques of parameter variability/sensitivity analysis and comparison to other models were used on the OpenGGCM, BATS-R-US, and SWMF magnetospheric MHD models to answer several questions about how these models compare. The questions include: (1) the difference between the model's predictions prior to and following to a reversal of Bz in the upstream interplanetary field (IMF) from positive to negative, (2) the influence of the preconditioning duration, and (3) the differences between models under extreme solar wind conditions. A differencing visualization tool was developed and used to address these three questions.;We find: (1) For a reversal in IMF Bz from positive to negative, the OpenGGCM magnetopause is closest to Earth as it has the weakest magnetic pressure near-Earth. The differences in magnetopause positions between BATS-R-US and SWMF are explained by the influence of the ring current, which is included in SWMF. Densities are highest for SWMF and lowest for OpenGGCM. The OpenGGCM tail currents differ significantly from BATS-R-US and SWMF; (2) A longer preconditioning time allowed the magnetosphere to relax more, giving different positions for the magnetopause with all three models before the IMF Bz reversal. There were differences greater than 100% for all three models before the IMF Bz reversal. The differences in the current sheet region for the OpenGGCM were small after the IMF Bz reversal. The BATS-R-US and SWMF differences decreased after the IMF Bz reversal to near zero; (3) For extreme conditions in the solar wind, the OpenGGCM has a large region of Earthward flow velocity (Ux) in the current sheet region that grows as time progresses in a compressed environment. BATS-R-US Bz , rho and Ux stabilize to a near constant value approximately one hour into the run under high compression conditions. Under high compression, the SWMF parameters begin to oscillate approximately 100 minutes into the run. All three models have similar magnetopause positions under low pressure conditions. The OpenGGCM current sheet velocities along the Sun-Earth line are largest under low pressure conditions.;The results of this analysis indicate the need for accounting for model uncertainties and differences when comparing model predictions with data, provide error bars on model prediction in various magnetospheric regions, and show that the magnetotail is sensitive to the preconditioning time.
Keywords/Search Tags:Models, Magnetospheric, Validation, IMF bz, SWMF, Bz reversal, Time, Used
Related items