Font Size: a A A

Dielectric micro-resonator-based opto-mechanical systems for sensing applications

Posted on:2016-11-29Degree:Ph.DType:Dissertation
University:Southern Methodist UniversityCandidate:Ali, Amir RoushdyFull Text:PDF
GTID:1478390017486328Subject:Mechanical engineering
Abstract/Summary:
In recent years, whispering gallery mode (WGM), or morphology dependent optical resonances (MDR) of dielectric micro-resonators have attracted interest with proposed applications in a wide range of areas due to the high optical quality factors, Q, they can exhibit (reaching ~ 10.;9 for silica spheres). Micro-resonator WGMs have been used in applications that include those in spectroscopy, micro-cavity laser technology, optical communications (switching, filtering and multiplexing), sensors technologies and even chemical and biological sensing. The WGM of these dielectric micro-resonators are highly sensitive to morphological changes (such as the size, shape, or refractive index) of the resonance cavity and hence, can be tuned by causing a minute change in the physical condition of the surrounding. In this dissertation, we have been creating opto-mechanical systems, which at their most basic, are extraordinarily sensitive sensors. One of the ultimate goals of this dissertation is to develop sensors capable of detecting the extremely small electric field changes. To improve the performance of the sensors, we couple a polymer cantilever beam to a dielectric micro-resonator. The eventual use of such ultra sensitive electric filed sensors could include neural-machine interfaces for advanced prosthetics devices. The work presented here includes a basic analysis and experimental investigations of the electric field sensitivity and range of micro-resonators of several different materials and geometries followed by the electric field sensor design, testing, and characterization. Also, the effects of angular velocity on the WGM shifts of spherical micro-resonators are also investigated. The elastic deformation that is induced on a spinning resonator due to the centrifugal force may lead to a sufficient shift in the optical resonances and therefore interfering with its desirable operational sensor design. Furthermore, this principle could be used for the development of angular speed detection photonic sensors. In previous applications, the WGM shifts induced by the external effects were monitored by identifying and tracking individual resonance dip in the optical transmission spectrum. The success of the WGM sensors is strongly dependent on the precise and speeds tracking of the shifts of the resonant wavelengths. In this dissertation, we demonstrate the application of WGM micro-resonators for high-speed transient sensing (wide-bandwidth). To facilitate the use of the sensors for high-speed transient applications, we tune the interrogation laser using a harmonic rather than a ramp waveform and calibrate the laser response at various input frequencies and amplitudes using a Fabry-Perot interferometer. WGM shifts are tracked using a fast cross-correlation algorithm on the transmission spectra. We demonstrate dynamic force measurements up to 10 kHz using this approach. We also present a simple lumped-heat capacity thermal model to predict the laser's tuning response.
Keywords/Search Tags:WGM, Dielectric, Applications, Micro-resonators, Optical, Sensing, Sensors, Using
Related items