Font Size: a A A

Comparative study of TRPM5 in pancreatic beta-cells of Wistar Kyoto and Goto Kakizaki rats

Posted on:2016-08-19Degree:Ph.DType:Dissertation
University:University of Hawai'i at ManoaCandidate:Monteilh-Zoller, MahealaniFull Text:PDF
GTID:1474390017487849Subject:Physiology
Abstract/Summary:
TRPM5 is a member of the melastatin subfamily of the Transient-Receptor- Potential superfamily of ion channels. Through functional analysis of the chromosomal region 11p15.5, TRPM5 was identified and linked to a variety of childhood and adult tumors as well as to Beckwith-Wiedemann syndrome (Prawitt et al., 2000). TRPM5 RNA has been detected in a variety of tissues including: taste receptor cells, small intestines, liver, lungs, testis and brain (Hofmann et al., 2003). In addition, the rat insulinoma (INS- 1) pancreatic ss-cell line was shown to endogenously express TRPM5 (Prawitt et al., 2003). While earlier studies of TRPM5 conducted in taste receptor cells report TRPM5 as a divalent cation channel that is activated through a G protein-coupled receptor/phospholipase C signaling pathway (Perez et al., 2002; Zhang et al., 2003), other studies (Hofmann et al., 2003; Liu and Liman, 2003) have characterized TRPM5 as a Ca2+-activated non-selective monovalent cation channel.;I here, hypothesize that the pancreatic ss-cells of Goto Kakizaki will exhibit a reduction in TRPM5 which may contribute to the dysfunction of the ss-cell. To this end, we utilized immunostaining to compare the endogenous expression of TRPM5 in the Wistar Kyoto and Goto Kakizaki (spontaneous non-obese type 2 diabetes model) rat pancreatic ss-cell. We also incorporated the whole-cell patch technique to examine the activation characteristics of TRPM5 in both populations of rat ss-cells. Being that TRPM5 is Ca 2+-activated, we included fura-2 Ca2+ measurements to connect intracellular Ca2+- signaling to TRPM5 activation. In addition, we utilized the perforated patch technique to study glucose-stimulated Ca2+-signaling and TRPM5 activation.;Our results show TRPM5 expression in Wistar Kyoto rat pancreatic ss-cells with expression in the Goto Kakizaki rat being significantly reduced. We also observe significant differences in the glucose-induced Ca2+-signaling in the Goto Kakizaki rat. Our results suggest that chronic hyperglycemia in the Goto Kakizaki rat reduces expression of TRPM5 and leads to pancreatic ss-cell dysfunction thereby contributing to the progression of type 2 diabetes.
Keywords/Search Tags:Goto kakizaki, Pancreatic, Et al, TRPM5 activation, Expression, Taste receptor cells
Related items