Font Size: a A A

D-methionine (D-met) mechanisms underlying otoprotection from noise- and aminoglycoside-induced hearing loss

Posted on:2016-02-25Degree:Ph.DType:Dissertation
University:Southern Illinois University at CarbondaleCandidate:Fox, DanielFull Text:PDF
GTID:1474390017486142Subject:Pharmacology
Abstract/Summary:
D-methionine (D-met) has demonstrated otoprotection from noise-, aminoglycoside-, and cisplatin-induced hearing loss in animal studies. As a result, D-met is currently progressing through translational "bench to bedside" research. However, D-met's exact otoprotective mechanisms have not been fully elucidated. This study investigated relationships between dose- and time-dependent D-met otoprotection from noise- and aminoglycoside-induced hearing loss. Further, the study correlated protective D-met dose to endogenous antioxidant enzyme activity and lipid peroxidation.;Specific aim 1 tested D-met dose response protection by auditory brainstem response (ABR) threshold shift analysis and outer hair cell (OHC) quantification. D-met doses ranging from 25-200 mg/kg/dose were administered to chinchillas every 12 hours five times each before and after steady state noise exposure totaling 10 D-met doses. Results demonstrated optimal, sub-optimal, and supra-optimal bi-phasic D-met otoprotective dose response. Optimal D-met protection from steady state noise occurred at the 50 mg/kg/dose level. OHC quantification confirmed electrophysiological assessment.;Specific aim 2 measured D-met rescue protection from steady state noise exposure by ABR threshold shift analysis and OHC quantification. Five intraperitoneal (ip) D-met injections were administered every 12 hours beginning 3, 5, 7, 9, 12, 18, 24, 36, or 48 hours after steady state noise exposure. Results measured full D-met protection when administration began as late as 24 hours after noise secession. Significant partial protection was also measured for the 36 hour delay. OHC quantification confirmed electrophysiological assessment.;Specific aim 3 measured D-met preloading protection from steady state noise exposure by ABR threshold shift analysis and OHC quantification. Five ip D-met injections were administered every 12 hours beginning 2, 2.5, or 3 days prior to steady state noise exposure. Results measured significant D-met protection when administration ended as early as 24 hours prior to noise exposure. OHC quantification confirmed electrophysiological assessment.;Specific aim 4 tested dose-dependent D-met influence on antioxidant enzyme activity and oxidative stress in steady state noise-exposed chinchillas. One ip D-met injection, ranging from 25 to 200 mg/kg/dose, was administered every 12 hours beginning 2 days prior to steady state noise exposure for a total of 5 injections. Two hours post-noise exposure, animals were sacrificed and serum, liver, and cochleae were collected for endogenous antioxidant analysis. Glutaredoxin 2 (Grx2) was also analyzed 21 days post-noise exposure. Lower D-met doses (25 and 50 mg/kg/dose) increased superoxide dismutase and catalase activity. Glutathione reductase and glutathione peroxidase activities significantly increased with D-met doses but only at high concentrations (200 mg/kg/dose). At 21 days post-noise, Grx2 activity was significantly decreased in liver but greatly increased in the cochlea with high D-met doses (200 mg/kg/dose). The endogenous enzyme studies suggest optimal protective D-met dose determined in specific aims 1 through 3 may be secondary to increased superoxide dismutase and catalase activity which may result from D-met's free radical scavenging characteristics. Glutathione pathway activity increased only with high D-met doses that resulted in less optimal protection in specific aim 1. Thus, D-met-induced glutathione pathway enhancement may be a compensatory or saturation mechanism rather than the primary protective mechanism. Further, the extended pre-loading and rescue protection may be a result of significantly increased s-glutathionylation activity in the cochlea.;Specific aim 5 tested D-met protection from impulse noise exposures. D-met dose response, rescue, and antioxidant enzyme assay protocols, similar to those in specific aims 1, 3, and 4 in steady state animals, were performed on impulse noise-exposed chinchillas. D-met provided dose- and time-dependent optimal protection from impulse noise similar to the steady-state noise studies. Optimal D-met protection was measured at the 100 mg/kg/dose level with complete rescue protection as late as 24 hours post-noise exposure. Endogenous enzyme activity measures demonstrated significant superoxide dismutase, catalase, and glutathione peroxidase activity increases which correlated with optimal D-met protective dose (100 mg/kg/dose) and catalase and superoxide dismutase activity decreases at the higher doses (200 mg/kg/dose).;Specific aim 6 tested dose-dependent D-met protection from tobramycin, amikacin, kanamycin, and gentamicin aminoglycoside antibiotics. Guinea pig animal models were normalized to achieve a 30-40 dB ABR threshold shift with the lowest possible aminoglycoside dose. D-met and the aforementioned single aminoglycoside were administered for 21, 28, 23, or 14 days, respectively. ABRs were collected and assessed at baseline, 2, 4, and 6 weeks after drug administration initiation. After the 6-week ABR data collection, cochleae were collected and prepared for OHC quantification. ABR threshold shifts and OHC quantifications demonstrate significant bi-phasic D-met-induced protection from each aminoglycoside type with different D-met doses. OHC quantification confirmed electrophysiological assessment.;This study identified optimal protective D-met dose for aminoglycoside- and noise- induced ototoxicity. It also identified optimal protective D-met dose timing for steady state and impulse noise-induced hearing loss. (Abstract shortened by UMI.).
Keywords/Search Tags:D-met, Noise, Protection, Hearing loss, OHC quantification confirmed electrophysiological assessment, Steady state, Aminoglycoside, ABR threshold shift
Related items