Font Size: a A A

Development of natural fiber reinforced polylactide-based biocomposites

Posted on:2015-03-07Degree:Ph.DType:Dissertation
University:Ecole Polytechnique, Montreal (Canada)Candidate:Arias Herrera, Andrea MarcelaFull Text:PDF
GTID:1472390017996764Subject:Chemical Engineering
Abstract/Summary:
Polylactide or PLA is a biodegradable polymer that can be produced from renewable resources. This aliphatic polyester exhibits good mechanical properties similar to those of polyethylene terephthalate (PET). Since 2003, bio-based high molecular weight PLA is produced on an industrial scale and commercialized under amorphous and semicrystalline grades for various applications. Enhancement of PLA crystallization kinetics is crucial for the competitiveness of this biopolymer as a commodity material able to replace petroleum-based plastics. On the other hand, the combination of natural fibers with polymer matrices made from renewable resources, to produce fully biobased and biodegradable polymer composite materials, has been a strong trend in research activities during the last decade. Nevertheless, the differences related to the chemical structure, clearly observed in the marked hydrophilic/hydrophobic character of the fibers and the thermoplastic matrix, respectively, represent a major drawback for promoting strong fiber/matrix interactions.;The size reduction of cellulose particles from micro to the nanoscale has also drawn special attention over the last decade. Well-dispersed nanosized fiber networks into polymeric matrices may bring extraordinary strength enhancement and modify the particle/polymer interactions at the molecular level. As a consequence, crystallization may be promoted at considerably low concentrations of reinforcement. It is well-known that dispersion of cellulose nanocrystals (CNC) in non-aqueous systems is a major challenge for further developments. In this work, a novel twostep process involving solvent-mixing and melt-mixing was found to successfully dispersed cellulose nanocrystals at low weight loadings in the PLA matrix. Polyethylene oxide (PEO) of high and low molecular weight was proposed as a polymer carrier for nanocrystals, and the encapsulation of CNC in this polymer was achieved. Reduction of agglomerate size was controlled by the increase of PEO:CNC weight content ratio in the final nanocomposites. A synergistic effect between plasticization and reinforcement of the PLA matrix was clearly evidenced from the crystallization behavior of nanocomposites. The PLA nanocomposite preparation method presented in this dissertation represents a step forward in the potential applications of CNC in green composite materials.;The aim of the present study was to investigate the intrinsic fiber/matrix interactions of PLAbased natural fiber composites prepared by melt-compounding. Short flax fibers presenting a nominal length of ∼1 mm were selected as reinforcement and biocomposites containing low to moderate fiber loading were processed by melt-mixing. Fiber bundle breakage during processing led to important reductions in length and diameter. The mean aspect ratio was decreased by about 50%. Quiescent crystallization kinetics of PLA and biocomposite systems was examined under isothermal and non-isothermal conditions. The nucleating nature of the flax fibers was demonstrated and PLA crystallization was effectively accelerated as the natural reinforcement content increased. Such improvement was controlled by the temperature at which crystallization took place, the liquid-to-solid transition being thermodynamically promoted by the degree of supercooling. During crystallization, viscoelastic properties are expected to be strongly influenced by crystallite development and impingement. Rheometry was selected as a suitable technique to study the evolution of complex viscosity and storage and loss moduli during the crystallization of compounded PLA and PLA-biocomposites. Optimization of experimental conditions was needed for achieving the compensation of polymer shrinkage, which was a major concern for the reproducibility of measurements, particularly at high supercooling level. Fruitful information about the enhanced crystallization rate due to the presence of flax fibers in a wide range of crystallization temperatures was obtained from this study. Since development of crystallization in industrial processing may differ greatly from quiescent studies, a preliminary investigation of the effect of shear flow on the improvement of PLA crystallization was carried out. Using the same shear rate interval, two different sets of conditions were explored, namely (1) constant total deformation and (2) constant shearing time. In both cases, the crystallization enhancement was evidenced by a decrease in the induction time which became stronger as shear rate augmented. About 75% of reduction was observed at 4 s-1, the maximum shear rate reached in this research.
Keywords/Search Tags:PLA, Fiber, Shear rate, Polymer, Natural, Development, CNC
Related items