A non-contacting approach for full field dynamic strain monitoring of rotating structures using the photogrammetry, finite element, and modal expansion techniques | | Posted on:2016-01-15 | Degree:Ph.D | Type:Dissertation | | University:University of Massachusetts Lowell | Candidate:Baqersad, Javad | Full Text:PDF | | GTID:1472390017971464 | Subject:Mechanical engineering | | Abstract/Summary: | PDF Full Text Request | | Health monitoring of rotating structures such as wind turbines and helicopter rotors is generally performed using conventional sensors that provide a limited set of data at discrete locations near or on the hub. These sensors usually provide no data on the blades or interior locations where failures may occur. Within this work, an unique expansion algorithm was extended and combined with finite element (FE) modeling and an optical measurement technique to identify the dynamic strain in rotating structures. The merit of the approach is shown by using the approach to predict the dynamic strain on a small non-rotating and rotating wind turbine. A three-bladed wind turbine having 2.3-meter long blades was placed in a semi-built-in boundary condition using a hub, a machining chuck, and a steel block. A finite element model of the three wind turbine blades assembled to the hub was created and used to extract resonant frequencies and mode shapes. The FE model was validated and updated using experimental modal tests. For the non-rotating optical test, the turbine was excited using a sinusoidal excitation, a pluck test, arbitrary impacts on three blades, and random force excitations with a mechanical shaker. The response of the structure to the excitations was measured using three-dimensional point tracking. A pair of high-speed cameras was used to measure the displacement of optical targets on the structure when the blades were vibrating. The measured displacements at discrete locations were expanded and applied to the finite element model of the structure to extract the full-field dynamic strain. The results of the work show an excellent correlation between the strain predicted using the proposed approach and the strain measured with strain-gages for all of the three loading conditions. Similar to the non-rotating case, optical measurements were also preformed on a rotating wind turbine. The point tracking technique measured both rigid body displacement and flexible deformation of the blades at target locations. The measured displacements were expanded and applied to the finite element model of the turbine to extract full-field dynamic strain on the structure. In order to validate the results for the rotating turbine, the predicted strain was compared to strain measured at four locations on the spinning blades using a wireless strain-gage system. The approach used in this work to predict the strain showed higher accuracy than measurements obtainable by using the digital image correlation technique. The new expansion approach is able to extract dynamic strain all over the entire structure, even inside the structure beyond the line of sight of the measurement system. Because the method is based on a non-contacting measurement approach, it can be readily applied to a variety of structures having different boundary and operating conditions, including rotating blades. | | Keywords/Search Tags: | Rotating, Structure, Using, Approach, Dynamic strain, Finite element, Wind turbine, Blades | PDF Full Text Request | Related items |
| |
|