Font Size: a A A

Attenuation of trace organic compounds by advanced treatment technologies in water reuse

Posted on:2015-10-22Degree:Ph.DType:Dissertation
University:The University of ArizonaCandidate:Anumol, TarunFull Text:PDF
GTID:1471390020451806Subject:Environmental Engineering
Abstract/Summary:
The ubiquity of pharmaceuticals and personal care products in water systems is well known. With the increasing implementation of water reuse schemes in the US, concern about potential health effects of these compounds in humans has risen. While potential synergistic effects of chronic low doses exposure to a cocktail of these compounds is still being studied, it is prudent to monitor and attenuate these trace organic compounds (TOrCs) from our water sources. This research initially focused on identifying suitable `indicator' TOrCs based on theoretical physico-chemical parameters and actual experimental data. It was concluded that an indicator list will be specific to the goal targeted with dependence on treatment process, occurrence and analytical ease. Quantification of these TOrCs are part per trillion levels in water requires accurate, precise and robust analytical techniques. The next part of this research was spent on developing three different analytical methods with LC-MS/MS for the sensitive detection of TOrCs in several different water matrices including raw sewage and final drinking water. The treatment efficacy of granular activated carbon for attenuation of TOrCs is studied in detail with emphasis on developing correlations between TOrC removal and bulk organic parameters of water like UV absorbance and fluorescence by using rapid small-scale column testing. The results indicate a correlation between removal of TOrCs and bulk organic parameters that is independent of water quality. The effectiveness of commercially available activated carbon based point-of-use (POU) devices for removal of a set of TOrCs from water was evaluated. The data indicated that POUs are a viable option for treatment of TOrCs but specific removal depends on type of device, water quality and amount of water treated. Finally, further research was targeted at identifying transformation products as a result of oxidation of polyfluorinated precursor materials in reclaimed waters. The results illustrated that toxic perfluorocarboxylic acids can be formed on oxidation of fluorotelomer unsaturated carboxylic acids that are known to be present in water.
Keywords/Search Tags:Trace organic compounds, Water reuse
Related items