Font Size: a A A

Fundamental Studies on the Enzymatic Liquefaction and Rheology of Cellulosic Biomass viaMagnetic Resonance Imaging Velocimetry

Posted on:2016-07-30Degree:Ph.DType:Dissertation
University:University of California, DavisCandidate:Cardona, Maria JoseFull Text:PDF
GTID:1471390017981143Subject:Chemical Engineering
Abstract/Summary:
Worldwide need for alternatives to fossil fuels has driven significant research effort toward the development and scale-up of sustainable forms of energy. Second-generation biofuels, obtained from the breakdown of lignocellulosic biomass (e.g., agricultural residues), present a promising alternative. In biofuel production, the enzymatic hydrolysis of cellulose to glucose is currently one of the most expensive steps in the biochemical breakdown of lignocellulosic biomass. Economic considerations for large-scale implementation of this process demand operation at high solids loadings of biomass (>15% (w/w)) due to potential for higher product concentrations and reduction of water usage throughout the biorefining process. In the high-solids regime, however, biomass slurries form a high viscosity, non-Newtonian slurry that introduces processing challenges, especially during the initial stages of hydrolysis (liquefaction), due to the low availability of water in the bulk phase. Furthermore, a concomitant reduction in glucose yields with increase in solids loadings has been observed, a phenomenon that is not well understood, but if overcome could hold the key to achieving desirable yields during hydrolysis. In order to better understand liquefaction, a magnetic resonance imaging (MRI) rheometer was used to perform in-line, in situ, real-time, and noninvasive studies on biomass slurries undergoing enzymatic hydrolysis. Batch and fed-batch experiments were done on lignocellulosic and cellulosic substrates with both purified and mixtures of enzymes, under various reaction conditions. The mechanism of liquefaction was found to be decoupled from the mechanism of saccharification. In addition, end product inhibition was found to have an impact on both saccharification and liquefaction during the initial stage of hydrolysis, which has an impact on scale-up of hydrolysis processes. Lastly, to address and overcome high-solids limitations, a fed-batch liquefaction process based on using real-time slurry yield stress as a process control variable was designed and tested with a delignified cellulosic substrate. The timing of enzyme addition relative to biomass addition influenced process efficiency, and the upper limit of solids loading was ultimately limited by end product inhibition. The impact of these findings on process kinetic modeling and scale-up are also discussed.
Keywords/Search Tags:Biomass, Liquefaction, Process, Scale-up, Enzymatic, Cellulosic
Related items