Font Size: a A A

Finite element modeling of dislocation multiplication in silicon carbide crystals grown by physical vapor transport

Posted on:2016-09-16Degree:Ph.DType:Dissertation
University:Florida Atlantic UniversityCandidate:Chen, QingdeFull Text:PDF
GTID:1471390017980296Subject:Mechanical engineering
Abstract/Summary:
Silicon carbide as a representative wide band-gap semiconductor has recently received wide attention due to its excellent physical, thermal and especially electrical properties. It becomes a promising material for electronic and optoelectronic device under high-temperature, high-power and high-frequency and intense radiation conditions. During the Silicon Carbide crystal grown by the physical vapor transport process, the temperature gradients induce thermal stresses which is a major cause of the dislocations multiplication. Although large dimension crystal with low dislocation density is required for satisfying the fast development of electronic and optoelectronic device, high dislocation densities always appear in large dimension crystal. Therefore, reducing dislocation density is one of the primary tasks of process optimization. This dissertation aims at developing a transient finite element model based on the Alexander-Haasen model for computing the dislocation densities in a crystal during its growing process. Different key growth parameters such as temperature gradient, crystal size will be used to investigate their influence on dislocation multiplications. The acceptable and optimal crystal diameter and temperature gradient to produce the lowest dislocation density in SiC crystal can be obtained through a thorough numerical investigation using this developed finite element model. The results reveal that the dislocation density multiplication in SiC crystal are easily affected by the crystal diameter and the temperature gradient. Generally, during the iterative calculation for SiC growth, the dislocation density multiples very rapidly in the early growth phase and then turns to a relatively slow multiplication or no multiplication at all. The results also show that larger size and higher temperature gradient causes the dislocation density enters rapid multiplication phase sooner and the final dislocation density in the crystal is higher.
Keywords/Search Tags:Dislocation, Crystal, Multiplication, Finite element, Sic, Carbide, Model, Temperature gradient
Related items