Font Size: a A A

Transformation of Swine Manure and Algal Consortia to Value-added Products

Posted on:2016-09-16Degree:Ph.DType:Dissertation
University:University of ArkansasCandidate:Sharara, Mahmoud AFull Text:PDF
GTID:1471390017970310Subject:Engineering
Abstract/Summary:
The swine production sector is projected to grow globally. In the past, this growth manifested itself in increased herd sizes and geographically concentrated production. Although economically sound, these trends had negative consequences on surrounding ecosystems. Over-application of manure resulted in water quality degradation, while long-term storage of manure slurries was found to promote release of potent GHG emissions. There is a need for innovative approaches for swine manure management that are compatible with current scales of production, and increasingly strict environmental regulations.;This study aims to investigate the potential for incorporating gasification as part of a novel swine manure management system which utilizes liquid-solid separation and periphytic algal consortia as a phycoremediation vector for the liquid slurry. The gasification of swine manure solids, and algal biomass solids generate both a gaseous fuel product (producer gas) in addition to a biochar co-product.;First, the decomposition kinetics for both feedstock, i.e., swine manure solids, and algal solids, were quantified using thermogravimetry at different heating rates (1 ~ 40°C min-1) under different atmospheres (nitrogen, and air). Pyrolysis kinetics were determined for manure solids from two farms with different manure management systems. Similarly, the pyrolysis kinetics were determined for phycoremediation algae grown on swine manure slurries. Modeling algal solids pyrolysis as first-order independent parallel reactions was sufficient to describe sample devolatilization. Combustion of swine manure solids blended with algal solids, at different ratios, showed no synergistic effects.;Gasification of phycoremediation algal biomass was studied using a bench-scale auger gasification system at temperatures between 760 and 960°C. The temperature profile suggested a stratification of reaction zones common to fixed-bed reactors. The producer gas heating value ranged between 2.2 MJ m-3 at 760°C, and 3.6 MJ m-3 at 960°C.;Finally, life cycle assessment (LCA) was used to evaluate a proposed swine manure management system that includes a thermochemical conversion sub-system: drying, gasification, and producer-gas combustion (boiler). Liquid manure storage (uncovered tank) was the biggest contributor to GHG emissions. Liquid slurry management stages were credited with the highest fossil fuel use. Improvements to separation and drying technologies can improve this conversion scenario.
Keywords/Search Tags:Swine, Algal
Related items