Font Size: a A A

Application of microstructural engineering to the controlled cooling of steel wire rod

Posted on:1990-08-01Degree:Ph.DType:Dissertation
University:The University of British Columbia (Canada)Candidate:Campbell, Peter CameronFull Text:PDF
GTID:1471390017954381Subject:Engineering
Abstract/Summary:
The concept of microstructural engineering has been applied to Stelmor cooling of steel wire rod. The Stelmor process is situated immediately following the rod mill and utilizes forced air to cool steel rod from the rolling temperature, through austenite transformation, down to a temperature suitable for handling. A mathematical model has been developed for the prediction of the mechanical properties of the steel rod as a function of cooling parameters in the process and steel composition. The model is based on one-dimensional heat conduction within the rod and is limited to plain-carbon eutectoid and hypoeutectoid steels. Phase transformation kinetics in the model, for both the austenite-ferrite and austenite-pearlite reactions, have been characterized through the use of the Avrami equation. A combination of experimental and literature data have been employed for the development of equations to quantitatively predict the microstructure formed in the steel rod after transformation. A modified Gladman equation was adopted for the strength predictions.;Comparisons of the model-predicted thermal histories, microstructures and mechanical properties with those measured in both the laboratory and plant tests have been made. The results of the thermal history comparison for both laboratory and plant conditions showed good agreement between the model-predicted and measured centreline temperatures of control-cooled steel rod. Predicted temperatures during the austenite-ferrite and austenite-pearlite phase transformations were within the expected error associated with prediction of transformation kinetics. Good agreement was obtained between model-predicted and measured ferrite fraction, ferrite grain diameter and interlamellar pearlite spacing. Yield strengths and ultimate tensile strengths predicted by the model for the laboratory and plant tests displayed excellent agreement with measured strengths.;In order to obtain a test of the predictive capability of the model under Stelmor line conditions, an independent set of ultimate strengths for Stelmor-cooled steel grades was obtained. These samples were taken directly from grades being processed on the line. A comparison between model-predicted and measured UTS for these grades yielded excellent agreement in the 1020-1040 and eutectoid composition range, with a fair prediction obtained for 1055-1065 grades. (Abstract shortened with permission of author.)...
Keywords/Search Tags:Steel, Rod, Cooling, Grades
Related items