Font Size: a A A

Biological consequences from interaction of nanosized titanium(iv) oxides with defined human blood components

Posted on:2015-06-19Degree:Ph.DType:Dissertation
University:University of Massachusetts LowellCandidate:Stella, AaronFull Text:PDF
GTID:1471390017489313Subject:Nanotechnology
Abstract/Summary:
The utility of engineered nanomaterials is growing, particularly the titanium(iv) oxide (titanium dioxide, TiO2) nanoparticles. TiO 2 is very useful for brightening paints, and coloring foods. Nano-sized TiO2 is also useful for sunscreens, cosmetics, and can be utilized as a photocatalyst. However, the nanometer size of the TiO2 nanoparticle is a characteristic that may contribute oxidative stress to red blood cells (RBCs) in humans. This study utilized screening methods to evaluate different forms of TiO2 nanoparticles which differ by primary particle size, specific surface area, crystalline phase, and surface polarity. RBCs are rich in the intracellular antioxidant glutathione (GSH). HPLC analysis revealed that some TiO2 nanoparticles caused oxidation of GSH to glutathione disulfide (GSSG). Vitamin E is a major membrane-bound antioxidant. Vitamin E levels were then determined by HPLC in the RBC membrane after exposure to TiO2 nanoparticles. The HPLC results showed that each nanoparticle oxidized RBC glutathione and membrane vitamin E at different rates. When hemoglobin was mixed with each TiO2 nanoparticle, hemoglobin was adsorbed at varying rates to the surface of the nanoparticles. Similarly, the aminothiol homocysteine was also adsorbed at different rates by the TiO2 nanoparticles. Using light microscopy, some TiO2 nanoparticles caused the formation of RBC aggregates which significantly changed the RBC morphology. The aggregation data was quantified using a hemacytometer. The TiO2 nanoparticles also caused hemolysis of RBCs. Hemolysis is considered to be a toxic endpoint for RBCs. Changes in the nucleated lymphocyte gene expression of certain oxidative stress genes were also observed using real-time polymerase chain reaction (qPCR). The data indicates that RBCs can ultimately be hemolyzed by biological oxidative damage resulting from a combination of oxidative mechanisms. Additionally, the TiO2 nanoparticles demonstrated the ability to adsorb biomolecules to their surface which could be useful for nanomedicine purposes or biosensing applications. The changes in lymphocyte gene expression at different doses indicate that these TiO2 nanoparticles are capable of disrupting nuclear activity. The use of multiple screening methods provided an effective approach to evaluate nano-bio interactions. The use of a biologically-relevant matrix combined with specific detection methods yielded results which accurately predict biological adversity.
Keywords/Search Tags:Tio2, Nanoparticles, Biological, Titanium, RBC
Related items