Font Size: a A A

Numerical framework for mesoscale simulation of heterogeneous energetic materials

Posted on:2016-10-31Degree:Ph.DType:Dissertation
University:The University of IowaCandidate:Rai, Nirmal KumarFull Text:PDF
GTID:1471390017479462Subject:Mechanical engineering
Abstract/Summary:
Heterogeneous energetic materials such as plastic bonded explosives (PBX), pressed explosives etc. have very detailed and non-uniform microstructure. The heterogeneities are usually present in the form of binder, voids, microcracks etc. Shock interaction with these heterogeneities leads to local heated regions known as hot spots. It is widely accepted that these hot spots are predominantly the cause of triggering reaction and eventually ignition in these energetic materials. There are various physical mechanisms operating at mesoscale through which hot spot can be created such as void collapse, inter-granular friction in energetic crystals, shock heating of HMX crystals and binder etc. Hence, microstructural heterogeneities can play a vital role for shock initiation in heterogeneous explosives. In the current work, a general framework is established for performing mesoscale simulations on heterogeneous energetic materials. The numerical framework is based on a massively parallel Cartesian grid based Eulerian solver. Narrow band level set approach is used for sharp tracking of the material interfaces. The interfacial conditions are applied using modified ghost fluid method. The use of level set method for interface tracking provides an inherent advantage of using level set based image segmentation algorithm (active contouring) for the representation of explosives microstructure. The image processing approach allows to perform simulation on real geometries than the idealized shapes. The image processing framework is incorporated in the Eulerian solver. The energetic material considered in the current work is HMX. The chemical decomposition of HMX is modeled using Henson Smilowitz chemical kinetic law. Shock analysis is performed on two different samples of HMX based pressed explosives. Also, both two dimensional and three dimensional shock analysis on mock sugar geometry are performed. The effect of shock strength and relative positioning of voids on ignition threshold of porous HMX is studied. The current work is focused towards the development of a computational framework which can replicate the experimental way of studying the shock initiation behavior of energetic materials i.e. using flyer plate simulations.
Keywords/Search Tags:Energetic materials, Heterogeneous, Framework, Shock, Explosives, HMX, Mesoscale, Using
Related items