Font Size: a A A

Nutritional influences on arsenic toxicity in Bangladeshi men and women: Interplay between one-carbon metabolism, arsenic, and epigenetics

Posted on:2017-02-19Degree:Ph.DType:Dissertation
University:Columbia UniversityCandidate:Howe, Caitlin GFull Text:PDF
GTID:1471390014498326Subject:Environmental Health
Abstract/Summary:
Background: In Bangladesh, more than 57 million individuals are exposed to arsenic-contaminated drinking water at concentrations that exceed the World Health Organization guideline for safe drinking water, which is 10 mug/L. Arsenic is a human carcinogen, which has also been associated with numerous non cancer outcomes, including cardiovascular disease. For many arsenic-related health outcomes, susceptibility differs by sex, with some outcomes preferentially afflicting males and others females. Although reducing exposure to arsenic-contaminated drinking water is the primary strategy for preventing arsenic toxicity, cancer risks remain elevated decades after arsenic exposure has been reduced. Therefore, public health approaches which complement arsenic remediation efforts are needed. One potential set of strategies includes nutritional interventions. Deficiencies in one-carbon metabolism (OCM nutrients can cause hyperhomocysteinemia (HHcys), which has been associated with adverse health outcomes, including cancers and cardiovascular disease. In Bangladesh, the prevalence of HHcys is quite high and differs by sex (63% among men, 26% among women). Nutrients involved in the OCM pathway may also protect against arsenic toxicity. Two potential mechanisms include: 1) by enhancing arsenic metabolism and 2) by preventing/reversing arsenic-induced epigenetic dysregulation.;Arsenic metabolism facilitates urinary arsenic elimination and depends on two sequential S-adenosylmethionine (SAM)-dependent methylation steps, which yield the mono- and dimethyl arsenical species (MMA and DMA, respectively and S-adenosylhomocysteine (SAH), a potent inhibitor of most methyltransferases. SAM is synthesized via OCM, a pathway with many nutritional influences, including folate and cobalamin. There is substantial evidence from experimental studies that the OCM pathway is important for facilitating arsenic metabolism and elimination. However, the relationships between SAM, SAH, and arsenic methylation may be particularly complex in populations exposed continuously to arsenic, because 1) the arsenic metabolites compete for methylation, since each methylation step is catalyzed by the arsenic (+3) methyltransferase and requires a methyl group from SAM, and 2) folate and cobalamin nutritional status may vary between individuals.;Although the mechanisms mediating arsenic toxicity remain largely unclear and are likely multifactorial, there is increasing evidence that arsenic induces epigenetic dysregulation, including alterations in both DNA methylation and posttranslational histone modifications (PTHMs), and these effects may differ by sex. Arsenic has also been shown to alter gene expression in a sex dependent manner. However, the sex-specific effects of arsenic on PTHMs and gene expression have not been confirmed in a large epidemiological study. Since many of the enzymes involved in epigenetic regulation, including DNA methyltransferases and lysine histone methyltransferases, depend on SAM, epigenetic modifications are also influenced by OCM. Previous studies have demonstrated that nutritional methyl donors involved in the OCM pathway buffer against/modify toxicant-induced alterations in DNA methylation. This may also be true for arsenic-induced alterations in PTHMs. However, the relationships between OCM indices and PTHMs have not been characterized in arsenic-exposed populations. (Abstract shortened by ProQuest.).
Keywords/Search Tags:Arsenic, OCM, Nutritional, Metabolism, Drinking water, Epigenetic, SAM, Pthms
Related items