Font Size: a A A

Magmatic history and crustal genesis of South America: Constraints from U-Pb ages and Hf isotopes of detrital zircons in modern rivers

Posted on:2015-08-14Degree:Ph.DType:Dissertation
University:The University of ArizonaCandidate:Pepper, MartinFull Text:PDF
GTID:1470390020451408Subject:Geology
Abstract/Summary:
South America provides an outstanding laboratory for studies of magmatism and crustal evolution because it contains older Archean-Paleoproterozoic cratons that amalgamated during Mesoproterozoic and Neoproterozoic supercontinent assembly, as well as a long history of Andean magmatism that records crustal growth and reworking in an accretionary orogen. We have attempted to reconstruct the growth and evolution of South America through U-Pb geochronology and Hf isotope analyses of detrital zircons from 59 samples of sand from modern rivers and shorelines. Results from 5,524 new U-Pb ages and 1,199 new Hf isotope determinations are reported. We have also integrated our data into a compilation of all previously published zircon geochronologic and Hf isotopic information, yielding a record that includes >42,000 ages and >1,600 Hf isotope analyses. These data yield five main conclusions: (1) South America has an age distribution that is similar to most other continents, presumably reflecting the supercontinent cycle, with maxima at 2.2-1.8 Ga, 1.6-0.9 Ga, 700-400 Ma, and 360-200 Ma; (2) <200 Ma magmatism along the western margin of South America has age maxima at 183 Ma (191-175 Ma), 151 Ma (159-143 Ma), 126 Ma (131-121 Ma), 109 Ma (114-105 Ma), 87 Ma (95-79 Ma), 62 Ma (71-53 Ma), 39 Ma (43-35 Ma), 19 Ma (23-15 Ma), and 6 Ma (10-2 Ma); (3) for the past 200 Ma, there appears to be a positive correlation between magmatism and the velocity of convergence between central South America and Pacific oceanic plates; (4) Hf isotopes record reworking of older crustal materials during most time periods, with incorporation of juvenile crustal materials at ~1.6-1.0 Ga, 500-400 Ma and ~200-100 Ma; and (5) the Hf isotopic signature of <200 Ma magmatism is apparently controlled by the generation of juvenile magmas during extensional tectonism and reworking of juvenile versus evolved crustal materials during crustal thickening and arc migration.
Keywords/Search Tags:Crustal, South america, Hf isotope, Magmatism, U-pb, Ages
Related items