Font Size: a A A

Organic Molecular Thin Films: Growth, Structure, and Manipulation Studied by Scanning Tunneling Microscopy

Posted on:2016-12-29Degree:Ph.DType:Dissertation
University:University of Toronto (Canada)Candidate:Stock, Taylor J. ZFull Text:PDF
GTID:1470390017983846Subject:Materials science
Abstract/Summary:
Room temperature scanning tunneling microscopy (RT-STM) has been used to observe the growth modes, morphologies and crystal structures of sub-monolayer (ML) to multilayer thin films of phthalocyanines (H2Pc and CuPc), C60 fullerenes, and CuPc:C60 composites, grown on the Cu(111) surface. In addition to imaging these films, STM has been used to manipulate the various molecules via hot tunneling electron injection. At sub-ML coverage the phthalocyanines are mobile on the Cu(111) and form a diffuse 2D gas. Molecules in this mobile phase can be immobilized on the substrate through exposure to tunneling electrons at a bias voltage exceeding a threshold value. The bias threshold value and strength of the induced molecular immobilization is dependent on the particular phthalocyanine molecule/substrate combination. At approximately one ML coverage the phthalocyanine molecules become sterically confined and lie flat on the Cu(111), forming an ordered 2D lattice. As coverage is increased beyond 1ML in the Cu(111)- CuPc system, the molecule-substrate interaction diminishes in strength and the intermolecular interaction becomes dominant, causing the molecular crystal lattice parameters to evolve towards the bulk alpha-phase. This trend continues for the layer-by-layer growth of three complete ML, and then gives way to 3D island growth at a coverage of 4 ML. The 3D island growth mode of the pure CuPc films is dramatically suppressed by the inclusion of C60 during deposition. X-ray diffraction (XRD) and STM studies reveal that the CuPc molecular packing is altered upon C60 inclusion, producing disordered CuPc-C60 interfaces. The ordered molecular stacking of CuPc is found to be disrupted completely when C60 concentration reaches 30 wt.%. This disorder in the CuPc:C 60 composites is explained in terms of the relative strengths of the intermolecular interactions. Furthermore, an understanding of these relative interaction strengths is exploited to grow ordered composite films, through selective sequential depositions.
Keywords/Search Tags:Films, Growth, Tunneling, Molecular, C60
Related items