Font Size: a A A

Material synthesis for silicon integrated-circuit applications using ion implantation

Posted on:1998-08-01Degree:Ph.DType:Dissertation
University:University of California, BerkeleyCandidate:Lu, XiangFull Text:PDF
GTID:1468390014476985Subject:Engineering
Abstract/Summary:
As devices scale down into deep sub-microns, the investment cost and complexity to develop more sophisticated device technologies have increased substantially. There are some alternative potential technologies, such as silicon-on-insulator (SOI) and SiGe alloys, that can help sustain this staggering IC technology growth at a lower cost.; Surface SiGe and SiGeC alloys with germanium peak composition up to 16 atomic percent are formed using high-dose ion implantation and subsequent solid phase epitaxial growth. RBS channeling spectra and cross-sectional TEM studies show that high quality SiGe and SiGeC crystals with 8 atomic percent germanium concentration are formed at the silicon surface. Extended defects are formed in SiGe and SiGeC with 16 atomic percent germanium concentration. X-ray diffraction experiments confirm that carbon reduces the lattice strain in SiGe alloys but without significant crystal quality improvement as detected by RBS channeling spectra and XTEM observations.; Separation by plasma implantation of oxygen (SPIMOX) is an economical method for SOI wafer fabrication. This process employs plasma immersion ion implantation (PIII) for the implantation of oxygen ions. The implantation rate for Pm is considerably higher than that of conventional implantation. The feasibility of SPIMOX has been demonstrated with successful fabrication of SOI structures implementing this process. Secondary ion mass spectrometry (SIMS) analysis and cross-sectional transmission electron microscopy (XTEM) micrographs of the SPIMOX sample show continuous buried oxide under single crystal overlayer with sharp silicon/oxide interfaces. The operational phase space of implantation condition, oxygen dose and annealing requirement has been identified.; Physical mechanisms of hydrogen induced silicon surface layer cleavage have been investigated using a combination of microscopy and hydrogen profiling techniques. The evolution of the silicon cleavage phenomenon is recorded by a series of microscopic images. The underlying hydrogen profiles for between 250{dollar}spcirc{dollar}C and 500{dollar}spcirc{dollar}C annealing are characterized by SIMS and HFS experiments. An ideal gas law model calculation suggests that the internal pressure of molecular hydrogen filled microcavities is in the range of Giga-Pascal, high enough to break the silicon crystal bond. A dose threshold which prevents cleavage is observed at {dollar}1.6times 10sp{lcub}17{rcub}{dollar} cm{dollar}sp{lcub}-2{rcub}{dollar} for 40 kV hydrogen implantation.; A initial defect, in a silicon substrate, induced by a hydrogen microcavity is modeled as a circular crack which is embedded at a certain depth from the top silicon surface. A two-dimensional finite element model is made to calculate energy release rate along the crack surfaces. This numerical model predicts that the energy release rate is sufficient to overcome the silicon fracture toughness. The model further identifies the factors that can enhance the energy release rate.; Ion-Cut SOI wafer fabrication technique is implemented using Pm. The hydrogen implantation rate, which is independent of the wafer size, is considerably higher than that of conventional implantation. The simple Pm reactor setup and its compatibility with cluster-tool IC manufacturing system offer other Ion-Cut process optimization opportunities. The feasibility of Pm Ion-Cut process has been demonstrated with successful fabrication of SOI structures. The hydrogen plasma can be optimized so that only one ion species is dominant in concentration, with minimal effect on the Ion-Cut process by the residual ion components. We have also demonstrated the feasibility of performing Ion-Cut using Pm in helium plasma.
Keywords/Search Tags:Ion, Using, Rate, Silicon, Process, SOI, Hydrogen, Plasma
Related items