Font Size: a A A

A mechanics approach to the study of pressure sensitive adhesives and human skin for transdermal drug delivery applications

Posted on:2004-12-05Degree:Ph.DType:Dissertation
University:Stanford UniversityCandidate:Taub, Marc BarryFull Text:PDF
GTID:1464390011974786Subject:Engineering
Abstract/Summary:
Transdermal drug delivery is an alternative approach to the systemic delivery of pharmaceuticals where drugs are administered through the skin and absorbed percutaneously. This method of delivery offers several advantages over more traditional routes; most notably, the avoidance of the fast-pass metabolism of the liver and gut, the ability to offer controlled release rates, and the possibility for novel devices. Pressure sensitive adhesives (PSAs) are used to bond transdermal drug delivery devices to the skin because of their good initial and long-term adhesion, clean removability, and skin and drug compatibility. However, an understanding of the mechanics of adhesion to the dermal layer, together with quantitative and reproducible test methods for measuring adhesion, have been lacking. This study utilizes a mechanics-based approach to quantify the interfacial adhesion of PSAs bonded to selected substrates, including human dermal tissue.; The delamination of PSA layers is associated with cavitation in the PSA followed by the formation of an extensive cohesive zone behind the debond tip. A quantitative metrology was developed to assess the adhesion and delamination of PSAs, such that it could be possible to easily distinguish between the adhesive characteristics of different PSA compositions and to provide a quantitative basis from which the reliability of adhesive layers bonded to substrates could be studied. A mechanics-based model was also developed to predict debonding in terms of the relevant energy dissipation mechanisms active during this process.; As failure of transdermal devices may occur cohesively within the PSA layer, adhesively at the interface between the PSA and the skin, or cohesively between the corneocytes that comprise the outermost layer of the skin, it was also necessary to explore the mechanical and fracture properties of human skin. The out-of-plane delamination of corneocytes was studied by determining the strain energy release rate during debonding of cantilever-beam specimens containing thin layers of human dermal tissue at their midline. Finally, the interfacial adhesion of PSAs bonded to human skin was studied and the mechanics model that was developed for PSA failure was extended to provide the capability for in vivo reliability predictions for transdermal systems bonded to human skin.
Keywords/Search Tags:Skin, Transdermal, Drug delivery, PSA, Approach, Mechanics, Bonded
Related items