Font Size: a A A

Spectroscopic investigations of heme proteins

Posted on:2004-02-03Degree:Ph.DType:Dissertation
University:University of Toronto (Canada)Candidate:Ogilvie, Jennifer PaulineFull Text:PDF
GTID:1464390011966639Subject:Physics
Abstract/Summary:
Using several novel spectroscopic techniques, we investigate the dynamics of heme proteins over the full range of time scales relevant to their function. With ∼10 femtosecond time resolution we use ultrafast pump-probe spectroscopy to gain insight into the earliest dynamics initiated by the photodissociation of the carbon monoxide ligand from myoglobin. Coherent oscillations that are driven by the bond-breaking event reveal several vibrational modes of the heme that provide the driving force for the initial motions along the pathway to protein function. Much later along this pathway we address the question of ligand escape from myoglobin. With this purpose we develop heterodyne-detected diffractive-optics-based phase-grating spectroscopy, which provides more than 2 orders of magnitude increase in sensitivity for the measurement of volume changes and energetics. The improved sensitivity allows us to directly observe the ligand escape, which occurs via a number of discrete routes through the protein. Following the escape process, we observe the full cycle of dynamics that is complete when the carbon monoxide ligand rebinds to the protein. Using a resonant probe we re-examine the dynamics of ligand escape from myoglobin using transient absorption and transient-grating spectroscopy. This study confirms the findings of the previous off-resonant work, and allows us to explore the relationship between the observables in the phase-grating experiment and other resonant spectroscopies. The various dynamical processes of myoglobin provide a basis for understanding the structure/function relationship at the single protein level. This lays the foundation for a description of protein-protein interactions such as cooperativity in hemoglobin.
Keywords/Search Tags:Protein, Heme, Dynamics
Related items