Font Size: a A A

Thermodynamic and kinetic study of mixed metal oxide cathode material for lithium organic polymer electrolyte electrochemical cells

Posted on:1998-06-21Degree:Ph.DType:Dissertation
University:Rutgers The State University of New Jersey - New BrunswickCandidate:Atwater, Terrill BradfordFull Text:PDF
GTID:1462390014977235Subject:Engineering
Abstract/Summary:
The thermodynamics and discharge kinetics of the lithium/bismuth modified manganese dioxide electrochemical couple was investigated. These investigations coupled with biased impedance spectroscopy studies lead to the establishment of a model of the electrochemical interfaces of the system. Biased impedance spectroscopy allows for the study of the electrodes during open circuit and discharge conditions. This ability to study the electrode interface during discharge allowed for the development of an equivalent circuit and description of the complex interface of the mixed metal oxide. The results of these techniques were the establishment of a theory of the discharge mechanism of the lithium/bismuth modified manganese dioxide electrochemical cell and the processes involved.; Equivalent circuit analysis of materials provides data for comparison. Equivalent circuit analysis when used with biased impedance spectroscopy provides valued component data for lithium battery cathode material. The model, therefore, provides an invaluable tool in the investigation of new materials for use as lithium battery cathodes.; Kinetic measurements were used to determine the catalytic nature of the bismuth phase in bismuth modified manganese dioxide lithium primary battery cathode material. A reduction in activation energy for lithium cells was identified in the bismuth manganese mixed metal oxide as compared to manganese dioxide. Impedance spectroscopy allowed for the identification of an additional process linked to the catalytic behavior of the bismuth oxide phase of the bismuth manganese mixed metal oxide.; An additional part of the studies focused on the thermodynamics and kinetics of the lithium polymer electrolyte cells with bismuth manganese mixed metal oxide cathodes. This study resulted in the determination of thermodynamic properties of the electrochemical couple. Discharge kinetic measurements lead to the establishment of optimum cathode formulations. This optimization considered both gravimetric and volumetric efficiencies. Measurements examined the relationship between discharge characteristics and cathode material concentration and cathode thickness.
Keywords/Search Tags:Cathode material, Mixed metal oxide, Lithium, Electrochemical, Discharge, Kinetic, Biased impedance spectroscopy
Related items