Font Size: a A A

Vibration reduction in helicopters using active control of structural response (ACSR) with improved aerodynamic modeling

Posted on:2000-09-01Degree:Ph.DType:Dissertation
University:University of California, Los AngelesCandidate:Cribbs, Richard ClayFull Text:PDF
GTID:1462390014965724Subject:Engineering
Abstract/Summary:
This dissertation describes the development of a coupled rotor/flexible fuselage aeroelastic response model including rotor/fuselage aerodynamic interactions. This model is used to investigate fuselage vibrations and their suppression using active control of structural response (ACSR).; The fuselage, modeled by a three dimensional structural dynamic finite element model, is combined with a flexible, four-bladed, hingeless rotor. Each rotor blade is structurally modeled as an isotropic Euler-Bernoulli beam with coupled flap-lag-torsional dynamics assuming moderate deflections. A free wake model is incorporated into the aeroelastic response model and is validated against previous studies. Two and three dimensional sources model the fuselage aerodynamics. Direct aerodynamic influences of the rotor and wake on the fuselage are calculated by integrating pressures over the surface of the fuselage. The fuselage distorts the wake and influences the air velocities at the rotor which alters the aerodynamic loading. This produces fully coupled rotor/fuselage aerodynamic interactions.; The influence of the aerodynamic refinements on vibrations is studied in detail. Results indicate that a free wake model and the inclusion of fuselage aerodynamic effects on the rotor and wake are necessary for vibration prediction at all forward speeds. The direct influence of rotor and wake aerodynamics on the fuselage plays a minor role in vibrations. Accelerations with the improved aerodynamic model are significantly greater than uniform inflow results. The influence of vertical separation between the rotor and fuselage on vibrations is also studied.; An ACSR control algorithm is developed that preferentially reduces accelerations at selected airframe locations of importance. Vibration reduction studies are carried out using this improved control algorithm and a basic algorithm studied previously at UCLA. Both ACSR methods markedly reduce acceleration amplitudes with no impact on the rotor system or airworthiness of the vehicle. The improved control algorithm performs significantly better than the basic control method with equivalent power requirements.
Keywords/Search Tags:Model, Aerodynamic, Response, ACSR, Improved, Fuselage, Rotor, Control algorithm
Related items