Font Size: a A A

The effect of air entrapment on the performance of squeeze film dampers: Experiments and analysis

Posted on:2000-11-10Degree:Ph.DType:Dissertation
University:Texas A&M UniversityCandidate:Diaz Briceno, Sergio EnriqueFull Text:PDF
GTID:1462390014961236Subject:Engineering
Abstract/Summary:
Squeeze film dampers (SFDs) are an effective means to introduce the required damping in rotor-bearing systems. They are a standard application in jet engines and are commonly used in industrial compressors. Yet, lack of understanding of their operation has confined the design of SFDs to a costly trial and error process based on prior experience.; The main factor deterring the success of analytical models for the prediction of SFDs' performance lays on the modeling of the dynamic film rupture. Usually, the cavitation models developed for journal bearings are applied to SFDs. Yet, the characteristic motion of the SFD results in the entrapment of air into the oil film, thus producing a bubbly mixture that can not be represented by these models.; In this work, an extensive experimental study establishes qualitatively and—for the first time—quantitatively the differences between operation with vapor cavitation and with air entrainment. The experiments show that most operating conditions lead to air entrainment and demonstrate the paramount effect it has on the performance of SFDs, evidencing the limitation of currently available models. Further experiments address the operation of SFDs with controlled bubbly mixtures. These experiments bolster the possibility of modeling air entrapment by representing the lubricant as a homogeneous mixture of air and oil and provide a reliable data base for benchmarking such a model.; An analytical model is developed based on a homogeneous mixture assumption and where the bubbles are described by the Rayleigh-Plesset equation. Good agreement is obtained between this model and the measurements performed in the SFD operating with controlled mixtures. A complementary analytical model is devised to estimate the amount of air entrained from the balance of axial flows in the film. A combination of the analytical models for prediction of the air volume fraction and of the hydrodynamic pressures renders promising results for prediction of the performance of SFDs with freely entrained air. The results of this work are of immediate engineering applicability. Furthermore, they represent a firm step to advance the understanding on the effects of air entrapment in the performance of SFD.
Keywords/Search Tags:Air, Film, Performance, Sfds, Experiments
Related items