Font Size: a A A

Conducting polymers as ion transport and solid electrolyte materials

Posted on:1998-01-02Degree:Ph.DType:Dissertation
University:University of FloridaCandidate:Larmat Gonzalez, Fernando EnriqueFull Text:PDF
GTID:1462390014474371Subject:Chemistry
Abstract/Summary:
The structure-property relationships in a series of poly (1,4-bis(2-heterocycle)-p-phenylenes) (PBHPs) and poly (3,12-bis(2-heterocycle)-p-dialkylfluorenes) (PBHDFs) as well as the use of polypyrrole (PPy) as solid electrolyte for tantalum capacitors have been investigated.;PBHPs, where the heterocycle is thiophene or pyrrole, and PBHDFs, where the heterocycle is thiophene or ethylenedioxythiophene (EDOT), were synthesized electrochemically and their electrochemical properties studied using cyclic voltammetry. The ion transport characteristics of the polymers were investigated using the electrochemical quartz microbalance (EQCM) while the electronic properties of the polymers were studied using optoelectrochemical and in situ electron paramagnetic resonance (EPR)/electrochemical techniques.;The electrochemical and electronic properties of PBHPs and PBHDFs have been found to be highly dependent on the nature of the heterocycle and on the pendant side groups substituents. Alkoxy substitution on the phenylene rings results in a marked decrease in the monomer and polymer oxidation potentials and a decrease in the electronic band gap. Substitution with long-chain alkoxy groups results in the formation of stable paramagnetic charge carriers at intermediate doping levels. Also, metallic-like character was observed at high doping levels. The presence of electron-rich heterocycles (e.g., pyrrol, EDOT) as terminal electropolymerizable units on the multi-ring conjugated monomers leads to stabilization of the cation-radical intermediates allowing the electropolymerization to be carried out at low potentials. The ion transport behavior of these polymers under electrochemical switching was found to be anion dominant.;PPy as solid electrolyte for tantalum capacitors was prepared using a combination of chemical and electrochemical methods, antraquinone-2-sulfonate (AQS;The capacitors prepared showed excellent high frequency performance up to 100 kHz and long term stability.
Keywords/Search Tags:Ion transport, Solid electrolyte, Polymers, Electrochemical
Related items