| This work examines the detailed flow characteristics of direct measuring skin friction gages with computational methods. This type of device uses a small movable head mounted flush to a wall such that the head is assumed to be exposed to the same shear stress from the flow as the surrounding wall. The force caused by the action of the shear stress on the head deflects a flexure system monitored by instruments such as strain gages mounted at the base of a beam.; The goal of the study was to develop an understanding of the effects that the geometric design and installation parameters of the sensor have on the surrounding flow and the ability of the sensor to reflect the undisturbed shear stress value. Disruption of the external flow due to poor design and/or improper installation of the sensor can take the form of intrusion into the flow, recession into the wall, and/or tilted alignment of the sensor such that the head is not flat in the plane of the wall, as well as flow into or out of the small gap surrounding the sensing head. Further, the performance of a direct measuring skin friction sensor in the presence of a pressure gradient has always been a concern. These effects are studied here with a three-dimensional, Navier-Stokes code based on a finite element method technique.; Numerical solutions for cases in which one or more design parameters were varied are shown for a variety of flow situations. These situations include: (a) a laminar fully-developed channel flow at a low Reynolds number, (b) a turbulent flat plate boundary layer flow at a high Reynolds number, and (c) strong favorable and adverse pressure gradient turbulent boundary layer flows created by converging and diverging channels at high Reynolds number.; For the turbulent external flat plate case, misalignment remained the dominant effect on the sensor response. Results indicated that, in general, protrusion is more costly than the same level of recession, and a protrusion of +1% of the head diameter was shown to cause in excess of 100% error in indicated wall shear output.; Finally, the favorable and adverse pressure gradient flows showed reasonable performance of the skin friction gage. Errors in output were shown to be -6% for the favorable pressure gradient case and 17% for the adverse pressure gradient case. Only the baseline gage design was studied for these situations, but the results from the two cases indicate that further reducing the lip thickness may not improve the performance of the gage.; As a general result, the use of computational fluid dynamics has been shown to be an effective tool in the design and analysis of skin friction gages. Using a computational approach has the advantage of being able to resolve the small, confined gap regions of the gage, providing information that has been shown to be unavailable from previous experimental studies. (Abstract shortened by UMI.)... |