Font Size: a A A

Creep of two-phase microstructures for microelectronic applications

Posted on:1999-01-08Degree:Ph.DType:Dissertation
University:University of California, BerkeleyCandidate:Reynolds, Heidi LinchFull Text:PDF
GTID:1461390014968782Subject:Engineering
Abstract/Summary:
The mechanical properties of low-melting temperature alloys are highly influenced by their creep behavior. This study investigates the dominant mechanisms that control creep behavior of two-phase, low-melting temperature alloys as a function of microstructure. The alloy systems selected for study were In-Ag and Sn-Bi because their eutectic compositions represent distinctly different microstructures. The In-Ag eutectic contains a discontinuous phase while the Sn-Bi eutectic consists of two continuous phases. In addition, this work generates useful engineering data on Pb-free alloys with a joint specimen geometry that simulates microstructures found in microelectronic applications. The use of joint test specimens allows for observations regarding the practical attainability of superplastic microstructures in real solder joints by varying the cooling rate. Steady-state creep properties of In-Ag eutectic, Sn-Bi eutectic, Sn-xBi solid-solution and pure Bi joints have been measured using constant load tests at temperatures ranging from 0°C to 90°C. Constitutive equations are derived to describe the steady-state creep behavior for In-Ag eutectic solder joints and Sn-xBi solid-solution joints. The data are well represented by an equation of the form proposed by Dorn: a power-law equation applies to each independent creep mechanism. Rate-controlling creep mechanisms, as a function of applied shear stress, test temperature, and joint microstructure, are discussed. Literature data on the steady-state creep properties of Sn-Bi eutectic are reviewed and compared with the Sn-xBi solid-solution and pure Bi joint data measured in the current study. The role of constituent phases in controlling eutectic creep behavior is discussed for both alloy systems. In general, for continuous, two-phase microstructures, where each phase exhibits significantly different creep behavior, the harder or more creep resistant phase will dominate the creep behavior in a lamellar microstructure. If a microstructure contains a hard, discontinuous phase, the creep behavior of this phase is not important.
Keywords/Search Tags:Creep, Phase, Microstructure, Eutectic
Related items