Font Size: a A A

Electric field-induced acoustic emission phenomena in ferroelectric and related ceramics

Posted on:2000-08-22Degree:Ph.DType:Dissertation
University:The Pennsylvania State UniversityCandidate:Aburatani, HideakiFull Text:PDF
GTID:1461390014966578Subject:Engineering
Abstract/Summary:
Field induced AE phenomena in bulk ferroelectric and related ceramics as well as multilayer ceramic actuators were investigated in this work. Concerning the field induced AE measurement technique, it was shown that commonly used voltage application units can excite sample vibrations electromechanically through their voltage stabilization processes and generate extrinsic AE signals. In order to detect intrinsic AE signals from within piezoelectric samples, a modified voltage application unit with a long time constant τ was proposed. For the study of origins of field induced AE, a ferroelectric lead zirconate titanate (PZT-5A), an electrostrictive lead magnesium niobate-lead titanate (0.9PMN-0.1PT) and a field-enhanced ferroelectric type lead lanthanum zirconate titanate (PLZT(9/65/35)) ceramics were selected. Pre-applied maximum field dependence on the AE generation were observed for ferroelectric PZT-5A and electrostrictive 0.9PMN-0.1PT ceramics. The study showed that there are two origins for the field induced AE of the ferroelectric PZT-5A: deformation related to domain reorientation processes and piezoelectric deformation unrelated to domain reorientation processes. The stress induction/relaxation process simply caused by the electrostrictive deformation was found to be the origin of AE in the electrostrictive 0.9PMN-0.1PT ceramics. The electric field induced non-ferroelectric to ferroelectric transition, reorientation process of the induced ferroelectric domains and induced internal stress were found to be the origins of AE in the field-enhanced ferroelectric PLZT (9/65/35). The potential use of the AE method in production was explored using a Multilayer Ceramic Actuator (MCA) fabricated by a tape casting method.
Keywords/Search Tags:Ferroelectric, Induced, Field, Ceramics, Related
Related items