Font Size: a A A

Frequency-dependent environmental fatigue crack propagation in the 7XXX alloy/aqueous chloride system

Posted on:2000-01-12Degree:Ph.DType:Dissertation
University:University of VirginiaCandidate:Gasem, Zuhair MattougFull Text:PDF
GTID:1461390014964037Subject:Engineering
Abstract/Summary:
The need to predict the fatigue performance of aging aerospace structures has focused interest on environmentally assisted cracking in thick-section damage-tolerant aluminum alloys (AA). The objective of this research is to characterize and understand the time-dependent processes that govern environmental fatigue crack propagation (EFCP) in 7XXX series aluminum alloys exposed to an aggressive environment. Results are utilized to identify the rate-controlling step in growth enhancement in order to develop a mechanistic model describing the time dependency of EFCP. Aluminum alloy 7075, tested in the sensitive (SL) orientation and exposed to aqueous chloride solution, is studied.; Da/dNcrit for different D K levels depends on 1/√fcrit, as predicted by process zone hydrogen-diffusion-limited crack growth modeling. A model based on hydrogen diffusion controlled growth is modified to include a stress-dependent critical hydrogen concentration normalized with the crack tip hydrogen concentration (Ccrit/CS).; It is proposed that da/dNcrit for a given D K and R corresponds to the distance ahead of the crack tip where the local tensile stress associated with Kmax is maximum. The reversed plasticity estimate of this location equals da/dNcrit for two aging conditions of 7075 (SL)/NaCl at R = 0.1. The EFCP dependencies on alloy microstructure (T6 vs. T7), crack orientation (SL vs. LT), and stress ratio are measured and interpreted based on their effect on da/dN crit and fcrit as well as environmental closure.; Chromate addition to the chloride solution eliminates the environmental acceleration of crack growth and reduces corrosion-product induced closure. In chromate-inhibited solution, the frequency dependence of EFCP in 7075 (SL) is unique. Da/dN is reduced at moderate and low frequencies to a value similar to crack growth rate in moist air, probably due to formation of a passive film which inhibits hydrogen uptake. Inhibition is mitigated by increasing frequency or increasing D K, which increase the crack tip strain rate, likely destabilizing the chromate protective film and promoting hydrogen uptake. (Abstract shortened by UMI.)...
Keywords/Search Tags:Crack, Environmental, Fatigue, Hydrogen, Chloride, EFCP
Related items