Processing, microstructure and mechanics of functionally graded Al A359/SiC(p) composite | | Posted on:2001-12-16 | Degree:Ph.D | Type:Dissertation | | University:State University of New York at Buffalo | Candidate:Rodriguez-Castro, Ramon | Full Text:PDF | | GTID:1461390014952543 | Subject:Engineering | | Abstract/Summary: | PDF Full Text Request | | Metal matrix composites (MMCs) have great promise for high temperature, high strength, wear resistant applications. However, their brittleness has limited their use in load bearing applications. Functionally graded MMCs with a reinforcement concentration higher on the surface than in the interior offer new opportunities, as these materials will have high surface hardness as well as high resistance to crack growth towards the interior. In this dissertation the processing and mechanical properties of a functionally graded MMC are investigated.; Rectangular blocks (100 mmx60 mmx50 mm) of functionally graded SiC particulate reinforced aluminum A359 matrix composite were prepared by centrifugal casting techniques. The reinforcement volume fraction profiles varied as the centrifugal force was applied, owing to the different densities of Al and SiC. The casting at 1300 rpm (angular velocity) had a well-mixed, refined microstructure with the maximum SiC volume fraction of 44% near the outer surface of the blocks. This surface exhibited an elevated hardness.; The effect of SiC particulate reinforcement on strengthening of A359 Al alloy was experimentally studied by tensile testing specimens prepared from the cast blocks. There was a continuous increase in tensile and yield strength with increasing SiC volume fractions in the range of 0.20 to 0.30. On the contrary, there was a reduction in tensile and yield strength for SiC concentrations in the range of 0.30 to 0.40. The elasticity modulus increased with increasing SiC volume fractions in the whole reinforcement range (0.20–0.40). Fractographic analysis by SEM revealed a ductile failure process of void growth in the matrix, but the amount of the void growth was less when the SiC concentration was higher. SEM also revealed SiC reinforcement fracture and decohesion, with the particle fracture increasing with the particle concentration.; Appropriate flat specimens with a continuously graded microstructure for fracture mechanics testing were machined from the cast blocks. No published work has reported specimens of similar characteristics (size of the specimens and continuous reinforcement gradation).; Fracture mechanics of the composite specimens with the crack parallel to the gradation in elastic properties was studied to investigate the effect of the nonhomogeneous microstructure on fracture toughness. Fatigue pre-cracking was used and a limited amount of fatigue crack propagation data was gathered. Low values of ΔKth and increased crack growth resistance in the Paris region were observed for the functionally graded composite compared to a homogeneous 20 vol% composite.; R-curve (KR) behavior of fracture was investigated in the functionally graded composite. At elevated SiC concentrations (low values of crack length), limited dissipation of energy by restrained plastic deformation of the matrix at the crack tip produced low fracture toughness values. On the contrary, at longer crack lengths SiC content decreased and there was more absorption of energy, resulting in higher fracture toughness values. In addition, the crack growth resistance behavior of the FGM composite was compared to the corresponding behavior of an Al A359/SiCp 20 vol% homogeneous composite. The latter exhibited a declining KR-curve behavior whereas the FGM composite displayed an increasing KR-curve behavior. Consequently, this increasing crack growth resistance behavior displayed by the functionally graded Al A359/SiCp composite shows that tailored changes in the microstructure could circumvent the low toughness inherent in MMCs. | | Keywords/Search Tags: | Composite, Functionally graded, Sic, Microstructure, Mmcs, Crack growth resistance, Mechanics | PDF Full Text Request | Related items |
| |
|