Font Size: a A A

Study of intermolecular contacts in proteins and oligomer interfaces and preliminary investigations into the design and production of nanomaterials from proteins

Posted on:1999-04-20Degree:Ph.DType:Dissertation
University:Rensselaer Polytechnic InstituteCandidate:Iyer, Ganesh HariharanFull Text:PDF
GTID:1461390014468880Subject:Chemistry
Abstract/Summary:
The first part of this research involved a study of the nature and extent of nonbonded interactions at crystal and oligomer interfaces. A survey was compiled of several characteristics of intersubunit contacts in 58 different oligomeric proteins, and of the intermolecular contacts in 223 protein crystal structures. Routines written in "S" language were utilized for the generation of the observed and expected contacts. The information in the Protein Data Bank (PDB) was extracted using the database management system, Protein Knowledge Base (PKB).; Potentials of mean force for atom-atom contacts and residue-residue contacts were derived by comparison of the number of observed interactions with the number expected by mass action. Preference association matrices and log-linear analyses were applied to determine the different factors that could contribute to the overall interactions at the interfaces of oligomers and crystals. Surface patches at oligomer and crystal interfaces were also studied to further investigate the origin of the differences in their stabilities.; Total number of atoms in contact and the secondary structure elements involved are similar in the two types of interfaces. Crystal contacts result from more numerous interactions by polar residues, compared with a tendency toward nonpolar amino acid prominent in oligomer interfaces. Contact potentials indicate that hydrophobic interactions at oligomer interfaces favor aromatic amino acids and methionine over aliphatic amino acids; and that crystal contacts form in such a way as to avoid inclusion of hydrophobic interactions.; The second part involved the development of a new class of biomaterials from two-dimensional arrays of ordered proteins. Point mutations were planned to introduce cysteine residues at appropriate locations to enable cross-linking at the molecular interface within given crystallographic planes. Crystallization and subsequent cross-linking of the modified protein would lead to the formation of arrays on subsequent dissociation of the crystal. Novel protein architectures can be generated from these cross-linked nanostructures.; Experiments with model protein, maltose-binding protein (MBP) were performed to develop purification, cross-linking and crystallization techniques. The long-term goal of this project is to apply the experience gained with MBP to the fabrication of nanomaterials from other, application-specific proteins for ultrafiltration and microelectronic devices.
Keywords/Search Tags:Protein, Oligomer interfaces, Contacts, Interactions, Crystal
Related items