Font Size: a A A

Investigations of crystallization and ionic interactions of sulfonated syndiotactic polystyrene ionomers

Posted on:2001-09-28Degree:Ph.DType:Dissertation
University:The University of Southern MississippiCandidate:Gummaraju, RaghuramFull Text:PDF
GTID:1461390014458456Subject:Chemistry
Abstract/Summary:
Syndiotactic polystyrene (sPS) is a semicrystalline polymer that crystallizes rapidly and exhibits several polymorphic crystal structures. Crystallization of sPS from the melt results in an all-trans chain conformation comprised of α (hexagonal unit cell) and β (orthorhombic unit cell) crystal forms. Crystallization of sPS from solution produces helical crystal structures. To ascertain the link between ionic aggregation and crystallization in semicrystalline ionomers, sulfonated syndiotactic polystyrene (SsPS) has been selected as a model system.; 23Na SSNMR (Solid-state NMR) spectra have also been utilized to analyze the influence of a surfactant (i.e., dodecyl benzene sodium sulfonate (DBSNa)) on the state of ionic aggregation. Increasing the surfactant content within SsPS ionomers caused a downfield shift coupled with a decrease in width, for the peak corresponding to the ionic aggregates. Added DBSNa molecules can disrupt interactions within the ionic aggregates and consequently weaken the electrostatic network in SsPS.; The influence of nonpolar/polar additives on syndiotactic polystyrene was also evaluated utilizing isothermal crystallization, 23Na SSNMR, 13C CPMAS (Cross-polarization Magic-angle spinning) NMR and WAXD (Wide-angle X-ray Diffraction) investigations.; To evaluate the influence of crystallization on ionic aggregation in SsPS ionomers, 23Na and 13C SSNMR techniques have been utilized. Polymorphic nature was not significantly affected by the incorporation of ionic groups, as indicated by the identical 13C spectra for sPS and SsPS polymers. A densification of the crystalline domains is likely to affect the conformations of amorphous chains attached to the crystallite surfaces. This perturbation in chain conformation may then result in a disruption of the state of ionic aggregation. The retention of the state of ionic aggregation within SaPS upon annealing clearly indicates that the disruption in the ionic domains of the SsPS ionomer originates from the polymorphic transition. (Abstract shortened by UMI.)...
Keywords/Search Tags:Ionic, Syndiotactic polystyrene, Crystallization, Sps, Polymorphic, Ionomers
Related items