Font Size: a A A

Fusion boundary microstructure evolution in aluminum alloys

Posted on:2001-04-29Degree:Ph.DType:Dissertation
University:The Ohio State UniversityCandidate:Kostrivas, Anastasios DimitriosFull Text:PDF
GTID:1461390014453985Subject:Engineering
Abstract/Summary:
A melting technique was developed to simulate the fusion boundary of aluminum alloys using the GleebleRTM thermal simulator. Using a steel sleeve to contain the aluminum, samples were heated to incremental temperatures above the solidus temperature of a number of alloys. In alloy 2195, a 4wt%Cu-1wt%Li alloy, an equiaxed non-dendritic zone (EQZ) could be formed by heating in the temperature range from approximately 630 to 640°C. At temperatures above 640°C, solidification occurred by the normal epitaxial nucleation and growth mechanism. Fusion boundary behavior was also studied in alloys 5454-H34, 6061-T6, and 2219-T8.; Additionally, experimental alloy compositions were produced by making bead on plate welds using an alloy 5454-H32 base metal and 5025 or 5087 filler metals. These filler metals contain zirconium and scandium additions, respectively, and were expected to influence nucleation and growth behavior. Both as-welded and welded/heat treated (540°C and 300°C) substrates were tested by melting simulation, resulting in dendritic and EQZ structures depending on composition and substrate condition.; Orientation imaging microscopy (OIM(TM)) was employed to study the crystallographic character of the microstructures produced and to verify the mechanism responsible for EQZ formation. OIM(TM) proved that grains within the EQZ have random orientation. In all other cases, where the simulated microstructures were dendritic in nature, it was shown that epitaxy was the dominant mode of nucleation. The lack of any preferred crystallographic orientation relationship in the EQZ supports a theory proposed by Lippold et al that the EQZ is the result of heterogeneous nucleation within the weld unmixed zone.; EDS analysis of the 2195 on STEM revealed particles with ternary composition consisted of Zr, Cu and Al and a tetragonal type crystallographic lattice. Microdiffraction line scans on EQZ grains in the alloy 2195 showed very good agreement between the measured Cu composition within the interior of the non-dendritic grains and the corresponding value the Scheil equation predicts for the first solid to form upon solidification for a binary Al-Cu alloy with identical Cu composition.; In the context of the alloys, compositions and substrate conditions examined a mechanistic model for EQZ zone formation is proposed, helpful in adjusting base metal compositions and/or substrate conditions to control fusion boundary microstructure.
Keywords/Search Tags:Fusion boundary, Alloy, EQZ, Aluminum, Composition
Related items