Font Size: a A A

Austenite decomposition in ternary manganese, molybdenum and tungsten steels (Manganese, Molybdenum, Tungsten)

Posted on:2002-04-22Degree:Ph.DType:Dissertation
University:University of VirginiaCandidate:Hackenberg, Robert ErrolFull Text:PDF
GTID:1461390011994725Subject:Engineering
Abstract/Summary:
A survey of austenite decomposition in Fe-(0.1, 0.2)C-(3, 4.2)Mn has revealed kinetic and morphological transitions which take place at substantial undercoolings below the paraequilibrium Ae3 temperature. An unusually long interval of transformation stasis was found in Fe-0.1C-3Mn, during which time the ferrite was free of carbides. A nodular product containing rod particles was observed in several of these alloys.; The grain boundary bainite (GBB) and twin boundary bainite (TBB) morphologies at the bay in Fe-0.24C-4Mo were significantly more complex than previously assumed, with differing arrangements of bainite subunits; their thickening rates also differed. TEM revealed 10 nm steps at the bainite-austenite interfaces in GBB. Mo enrichment was found within GBB-austenite interfaces and extended ∼10 nm into the austenite. The M2C carbides are always enriched in Mo, possessing a non-equilibrium Mo content at earlier reaction times. The energies stored in the ferrite-carbide interfacial area and in carbides possessing non-equilibrium Fe/Mo ratios were considered to reduce the driving force for diffusion by up to 20%.; GBB and TBB were found at and above the bay in Fe-0.3C-6.3W, while the bainite formed below the bay consisted of elongated subunits. M6C was found at all temperatures, while M2C was found only below the bay, both of which exhibited W partition. A dark-etching constituent of very high carbide density transformed the remaining pools of austenite at the late stages of reaction, a result consistent with the level of carbon in austenite rising with time.; Transitions in carbide morphology were explored in Fe-0.2C-63W. At lower reaction temperatures, M6C precipitates with ferrite. At higher temperatures the cellular precipitation of quasilamellar M 6C in austenite occurs, and is considered to take place inside the ferrite + austenite + M6C three-phase field. The austenite inside the quasilamellar carbide nodules reverts to ferrite at long times, indicating a non-equilibrium transformation path.
Keywords/Search Tags:Austenite, Ferrite
Related items