Font Size: a A A

High temperature heterogeneous reaction kinetics and mechanisms of tungsten oxidation

Posted on:2011-09-17Degree:Ph.DType:Dissertation
University:The Pennsylvania State UniversityCandidate:Sabourin, Justin LFull Text:PDF
GTID:1461390011970319Subject:Engineering
Abstract/Summary:
Tungsten, which is a material used in many high temperature applications, is limited by its susceptibility to oxidation at elevated temperatures. Although tungsten has the highest melting temperature of any metal, at much lower temperatures volatile oxides are formed during oxidation with oxygen containing species. This differs from many heterogeneous oxidation reactions involving metals since most reactions form very stable oxides that have higher melting or boiling points than the pure metal (e.g., aluminum, iron). Understanding heterogeneous oxidation and vaporization processes may allow for the expansion and improvement of high temperature tungsten applications.;In order to increase understanding of the oxidation processes of tungsten, there is a need to develop reaction mechanisms and kinetics for oxidation processes involving oxidizers and environmental conditions of interest. Tungsten oxidation was thoroughly studied in the past, and today there is a good phenomenological understanding of these processes. However, as the design of large scale systems increasingly relies on computer modeling there becomes a need for improved descriptions of chemical reactions. With the increase in computing power over the last several decades, and the development of quantum chemistry and physics theories, heterogeneous systems can be modeled in detail at the molecular level. Thermochemical parameters that may not be measured experimentally may now be determined theoretically, a tool that was previously unavailable to scientists and engineers. Additionally, chemical kinetic modeling software is now available for both homogeneous and heterogeneous reactions.;This study takes advantage of these new theoretical tools, as well as a thermogravimetric (TG) flow reactor developed as part of this study to learn about mechanisms and kinetics of tungsten oxidation. Oxidizers of interest are oxygen (O2), carbon dioxide (CO 2), water (H2O), and other oxidizers present in combustion and energy systems. The primary application for this research topic is the migration of erosion processes in solid rocket motor nozzles. Since oxidation is the primary erosion mechanism of tungsten based nozzles, mitigation of this process through improved comprehension of the chemical mechanisms will increase performance of future rocket systems.;In this dissertation, results of the high temperature reaction rates of bulk tungsten are studied using TG analysis in oxidizing atmospheres of O2, CO2, and H2O using helium (He) as an inert carrier gas. Isothermal reaction rates were determined at temperatures up to 1970 K, and oxidizing species partial pressures up to 64.6 torr. Kinetic parameters such as activation energies, frequency factors, and pressure exponents were determined for each reactive system. An important contribution of this work was quantifying the effects of carbon monoxide (CO) on the CO2 reaction, and hydrogen (H2) on the H2O reaction. In both cases the non-oxidizing species significantly reduced oxidation rates. Results have led to new interpretations and thought processes for limiting nozzle erosion in rocket motors. Combined with the TG analysis, as well as recent theoretical interpretations of reaction thermodynamics and kinetics, a new mechanism for tungsten and O2 oxidation has been developed using a one-dimensional numerical model of the TG flow reactor. Important chemical processes and species are also identified for reaction systems involving H2O and CO2. In the future, additional studies are needed to improve our understanding of these chemical species and processes so that more advanced kinetic mechanisms may be developed.;In addition to a detailed analysis of high temperature tungsten corrosion processes, synthetic graphite corrosion processes are studied in detail as well. Details of these studies are presented in an attached appendix of this dissertation. These studies considered not only oxidation processes, but decomposition of synthetic graphite in the presence of reducing and inert gas environments.
Keywords/Search Tags:Oxidation, High temperature, Tungsten, Reaction, Processes, Heterogeneous, Mechanisms, Kinetics
Related items